Publication:
Direct evidence for block-by-block growth in high-temperature superconductor ultrathin films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-05-28
Authors
Varela del Arco, María
Grogger, W.
Arias Serna, Diego
Sefrioui, Zouhair
Ballesteros, C.
Frishnan, K.M.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Charge neutrality and stoichiometry impose severe restrictions on the mechanisms of epitaxial growth of complex oxides. The fundamental question arises of what is the minimum growth unit when sample thickness is reduced beyond the size of the unit cell. We have investigated the growth mechanism of YBa_(2)Cu_(3)O_(7) cuprate superconductor, using a consistent approach based on the growth of noninteger numbers of YBa_(2)Cu_(3)O_(7) layers in YBa_(2)Cu_(3)O_(7)/PrBa_(2)Cu_(3)O_(7) superlattices. Ex situ chemical and structural analysis evidence a 2D block-by-block mechanism in which the minimum growth units are complete unit cell blocks, growing coherently over large lateral distances.
Description
© 2001 The American Physical Society. M. V. was partially supported by a research grant of the Fundación Universidad Carlos III de Madrid. Financial support from CICYT Grant No. MAT99-1706E is also acknowledged. M. V. is thankful for the hospitality received during her stay at the LBNL/NCEM. W. G. acknowledges support from the Max Kade Foundation for his stay at Berkeley. Work at LBNL/NCEM was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
Unesco subjects
Keywords
Citation
[1] C. Dekker, P. J. M. Wöltgens, R. H. Koch, B. W. Hussey, A. Gupta, Phys. Rev. Lett., 69, 2717 (1992). [2] T. Terashima, et al., Phys. Rev. Lett., 67, 1362 (1991). [3] I. N. Chan, et al., Phys. Lett. A, 175, 241 (1993). [4] J. Hasen, D. Lederman, I. K. Schuller, Phys. Rev. Lett., 70, 1731 (1993). [5] I. K. Schuller, Nature (London), 394, 419 (1998). [6] E. E. Fullerton, J. Guimpel, O. Nakamura, I. K. Schuller, Phys. Rev. Lett., 69, 2859 (1992). [7] I. Bozovic, J. N. Eckstein, MRS Bull., 20, 32 (1995). [8] J. P. Locquet, A. Catana, E. Mächler, C. Gerber, J. G. Bednorz, Appl. Phys. Lett., 64, 372 (1994). [9] S. J. Pennycook, et al., Phys. Rev. Lett., 67, 765 (1991). [10] C. L. Jia, et al., Physica (Amsterdam), 210C, 1 (1993). [11] T. Haage, et al., Appl. Phys. Lett., 68, 2427 (1996). [12] M. Varela, et al., Phys. Rev. Lett., 83, 3936 (1999). [13] E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, Y. Bruynseraede, Phys. Rev. B, 45, 9292 (1992). [14] O. L. Krivanek, M. K. Kundmann, K. Kimoto, J. Microsc., 180, 277 (1995). [15] F. Hofer, W. Grogger, G. Kothleitner, P. Warbichler, Ultramicroscopy, 67, 83 (1997). [16] T. Navidi-Kasmai, H. Kohl, Ultramicroscopy, 81, 223 (2000). [17] Energy-Filtering Transmission Electron Microscopy, edited by L. Reimer (Springer, New York, 1995). [18] O. L. Krivanek, A. J. Gubbens, M. K. Kundmann, G. C. Carpenter, in Proceedings of the Annual Meeting of the Microscopy Society of America, edited by G. W. Bailey and C. L. Rieder (San Francisco Press, San Francisco, 1993), p. 586. [19] I. K. Schuller, et al., Phys. Rev. Lett., 65, 1235 (1990). [20] J. M. Triscone, O. Fischer, Rep. Prog. Phys., 60, 1673 (1997).
Collections