Publication:
Origin of constant loss in ionic conductors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-02-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We have analyzed the constant loss contribution to the ac conductivity in the frequency range 10 Hz–1 MHz and temperatures down to 8 K, for two Li ionic conductors, one crystalline (Li_(0.18)La_(0.61)TiO_(3)) and the other glassy (61SiO_(2) . 35Li_(2)O . 3Al_(2)O_(3) . P_(2)O_85)). As temperature is increased a crossover is observed from a nearly constant loss to a fractional power law frequency dependence of the ac conductivity. At any fixed frequency ω, this crossover occurs at a temperature T such that ω = v_(0) exp(-E_(m)/k_(B)T), where v_(0) is the attempt frequency and E_(m) is identified with the barrier for Li^(+) ions to leave their wells.
Description
© 2001 The American Physical Society. The authors thank H. Jain for providing experimental data of the lithium silicate glass. Financial support from CICYT Grant No. MAT98-1053-C04 is also acknowledged. K. L. N. is supported by ONR.
Unesco subjects
Keywords
Citation
[1] C. A. Angell, Chem. Rev., 90, 523 (1990). [2] See the collection of papers in J. Non-Cryst. Solids, 131–133 (1991) --- ibid., 172–174 (1994) --- ibid., 235–238 (1998). [3] K. L. Ngai, J. Non-Cryst. Solids, 203, 232 (1996). [4] B. Roling, A. Happe, K. Funke, M. D. Ingram, Phys. Rev. Lett., 78, 2160 (1997). [5] P. Lunkenheimer, A. Pimenov, A. Loidl, Phys. Rev. Lett., 78, 2995 (1997). [6] C. León, M. L. Lucia, J. Santamaria, F. Sánchez-Quesada, Phys. Rev. B, 57, 41 (1998). [7] K. L. Ngai, C. T. Moynihan, Bull. Mater. Res. Soc., 23, 51 (1998). [8] D. L. Sidebottom, Phys. Rev. Lett., 82, 3653 (1999). [9] K. L. Ngai, C. León, Phys. Rev. B, 60, 9396 (1999). [10] T. B. Schrøder, J. C. Dyre, Phys. Rev. Lett., 84, 310 (2000). [11] A. Ghosh, A. Pan, Phys. Rev. Lett., 84, 2188 (2000). [12] A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983). [13] J. Wong, C. A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976). [14] A. Burns, G. D. Chryssikos, E. Tombari, R. H. Cole, W. M. Risen, Phys. Chem. Glasses, 30, 264 (1989). [15] W. K. Lee, J. F. Liu, A. S. Nowick, Phys. Rev. Lett., 67, 1559 (1991). [16] C. Cramer, K. Funke, T. Saatkamp, Philos. Mag. B, 71, 701 (1995). [17] K. L. Ngai, H. Jain, O. Kanert, J. Non-Cryst. Solids, 222, 383 (1997). [18] K. L. Ngai, J. Chem. Phys., 110, 10 576 (1999). [19] C. León, M. L. Lucía, J. Santamaría, Phys. Rev. B, 55, 882 (1997). [20] A. S. Nowick, A. V. Vaysleb, W. Liu, Solid State Ionics, 105, 121 (1998). [21] D. L. Sidebottom, P. F. Green, R. K. Brow, Phys. Rev. Lett., 74, 5068 (1995). [22] H. Jain, X. Lu, J. Non-Cryst. Solids, 196, 285 (1996). [23] F. Borsa, D. R. Torgeson, S. W. Martin, H. K. Patel, Phys. Rev. B, 46, 795 (1992). [24] K. L. Ngai, Phys. Rev. B, 48, 13 481 (1993). [25] Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, T. Uchida, M. Ikuta, M. Wakihara, Solid State Commun., 86, 689 (1993). [26] C. León, M. L. Lucia, J. Santamaría, M. A. Paris, J. Sanz, A. Várez, Phys. Rev. B, 54, 184 (1996). [27] C. León, J. Santamaría, M. A. Paris, J. Sanz, J. Ibarra, L. M. Torres, Phys. Rev. B, 56, 5302 (1997). [28] J. A. Alonso, J. Sanz, J. Santamaría, C. León, A. Várez, M. T. Fernández, Angew. Chem. Int. Ed. Engl., 39, 619 (2000). [29] J. Kincs, S.W. Martin, Phys. Rev. Lett., 76, 70 (1996). [30] K. L. Ngai, A. K. Rizos, Phys. Rev. Lett., 76, 1296 (1996). [31] P. Maass, M. Meyer, A. Bunde, W. Dieterich, Phys. Rev. Lett., 77, 1528 (1996). [32] K. L. Ngai, G. N. Greaves, C. T. Moynihan, Phys. Rev. Lett., 80, 1018 (1998). [33] C. H. Hsieh, H. Jain, J. Non-Cryst. Solids, 203, 293 (1996). [34] G. P. Tsironis, S. Aubry, Phys. Rev. Lett., 77, 5225 (1996). [35] A. Bikaki, N. K. Voulgarakis, S. Aubry, G. P. Tsironis, Phys. Rev. E, 59, 1234 (1999). [36] S. Flach, G. Mutschke, Phys. Rev. E, 49, 5018 (1994).
Collections