Publication:
Fast control of temporal and spatial coherence properties of microscope illumination using DLP projector

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-03-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Society of Photo-optical Instrumentation Engineers
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a novel technique for coherence engineering of the microscope illumination based on a DLP projector providing fast (millisecond range) switchable both temporal and spatial coherence design. Its performance is experimentally demonstrated for speckle-noise free quantitative phase imaging with different spatial coherence states. Strategies for design and control of the light coherence are discussed.
Description
Conference on Quantitative Phase Imaging (1º. 2015. San Francisco). © 2015 SPIE. Spanish Ministerio de Economía y Competitividad is acknowledged for funding the project TEC2011-23629.
Keywords
Citation
1. Boas, D., Pitris, C., and Ramanujam, N., [Handbook of Biomedical Optics], Taylor & Francis (2011). 2. Ferraro, P., Wax, A., and Zalevsky, Z., [Coherent Light Microscopy: Imaging and Quantitative Phase Analysis], Springer Series in Surface Sciences, Springer (2011). 3. Paganin, D. and Nugent, K. A., “Noninterferometric phase imaging with partially coherent light”, Phys. Rev. Lett. 80, 2586–2589 (1998). 4. Langehanenberg, P., Bally, G. v., and Kemper, B., “Application of partially coherent light in live cell imaging with digital holographic microscopy”, J. Mod. Optic 57(9), 709–717 (2010). 5. Phillips, K. G., Velasco, C. R., Li, J., Kolatkar, A., Luttgen, M., Bethel, K., Duggan, B., Kuhn, P., and McCarty, O., “Optical quantification of cellular mass, volume and density of circulating tumor cells identified in an ovarian cancer patient”, Frontiers in Oncology 2(72) (2012). 6. Kim, T., Zhou, R., Mir, M., Babacan, S. D., Carney, P. S., Goddard, L. L., and Popescu, G., “White-light diffraction tomography of unlabelled live cells”, Nat Photon (3), 256–263 (2014). 7. Rodrigo, J. A. and Alieva, T., “Rapid quantitative phase imaging for partially coherent light microscopy”, Opt. Express 22(11), 13472–13483 (2014). 8. Baleine, E. and Dogariu, A., “Variable coherence scattering microscopy”, Phys. Rev. Lett. 95, 193904 (2005). 9. Rodrigo, J. A. and Alieva, T., “Illumination coherence engineering and quantitative phase imaging”, Opt. Lett. 39(19), 5634–5637 (2014). 10. Samson, E. C. and Blanca, C. M., “Dynamic contrast enhancement in widefield microscopy using projectorgenerated illumination patterns”, New Journal of Physics 9(10), 363 (2007). 11. Stirman, J. N., Crane, M. M., Husson, S. J., Gottschalk, A., and Lu, H., “A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents”, Nat. Protocols 7(2), 207–220 (2012). 12. D. Dan et al., “DMD-based LED-illumination Super-resolution and optical sectioning microscopy”, Sci. Rep. 3 (2013). 13. Born, M. and Wolf, E., [Principles of Optics], Cambridge University Press, Cambridge (1999). 14. Schell, A. C., The multiple plate antenna, PhD thesis, Massachusetts Institute of Technology (1961). 15. Goodman, J. W., [Statistical Optics], Wiley&Sons, NY (2000). 16. Nixon, M., Redding, B., Friesem, A. A., Cao, H., and Davidson, N., “Efficient method for controlling the spatial coherence of a laser”, Opt. Lett. 38(19), 3858–3861 (2013). 17. Teague, M. R., “Deterministic phase retrieval: a Green’s function solution”, J. Opt. Soc. Am. 73(11), 1434–1441 (1983). 18. Gureyev, T. E. and Nugent, K. A., “Rapid quantitative phase imaging using the transport of intensity equation”, Opt. Commun. 133(1-6), 339–346 (1997). 19. Martin, A. V., Che, F. R., Hsieh, W. K., Kai, J. J., Findlay, S. D., and Allen, L. J., “Spatial incoherence in phase retrieval based on focus variation”, Ultramicroscopy 106, 914–924 (2006). 20. Burvall, A., Lundström, U., Takman, P. A. C., Larsson, D. H., and Hertz, H. M., “Phase retrieval in X-ray phase-contrast imaging suitable for tomography”, Opt. Express 19(11), 10359–10376 (2011). 21. Clark, J., Huang, X., Harder, R., and Robinson, I., “High-resolution three-dimensional partially coherent diffraction imaging”, Nat Commun 3, 993 (2012). 22. Bravin, A., Coan, P., and Suortti, P., “X-ray phase-contrast imaging: from pre-clinical applications towards clinics”, Physics in Medicine and Biology 58(1), R1 (2013). 23. Barty, A., Nugent, K. A., Paganin, D., and Roberts, A., “Quantitative optical phase microscopy”, Opt. Lett. 23(11), 817–819 (1998). 24. Jingshan, Z., Tian, L., Claus, R. A., Dauwels, J., and Waller, L., “Partially coherent phase recovery by Kalman filtering”, in [Frontiers in Optics 2013 Postdeadline], Frontiers in Optics 2013 Postdeadline , FW6A.9, Optical Society of America (2013). 25. Jingshan, Z., Tian, L., Dauwels, J., and Waller, L., “Partially coherent phase microscopy with arbitrary illumination source shape”, in [Classical Optics 2014], Classical Optics 2014 , CTu1C.5, Optical Society of America (2014).
Collections