Publication:
Effects of the d-donor level of vanadium on the properties of Zn_(1-x)V_(x)O films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-05-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We report the effect of d-levels of vanadium atoms on the electronic band structure of ZnO. Polycrystalline layers of Zn_(1-x)V_(x)O with 0 ≤ x ≤ 0.08 were synthesized using magnetron sputtering technique. Electrical measurements show that electron concentration increases with vanadium up to x = 0.04 and then decreases and films become insulating for x > 0.06. Optical characterization reveals that the absorption edge shifts to higher energy, while the photoluminescence (PL) peak shows a shift to lower energy with increasing vanadium content. This unusual optical behavior can be explained by an anticrossing interaction between the vanadium d-levels and the conduction band (CB) of ZnO. The interaction results in an upward shift of unoccupied CB (E+) and the downward shift of the fully occupied E- band derived from the vanadium d-levels. The composition dependence of optical absorption edge (E+) and PL peak (E-) can be fitted using the Band Anticrossing model with the vanadium d-level located at 0.13 eV below CB of ZnO and a coupling constant of 0.65 eV.
Description
© 2015 AIP Publishing LLC. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and National Center for Electron Microscopy/LBNL, under Contract No. DE-AC02-05CH11231. This work was partially supported by the Project MADRID-PV (P 2013/MAE-2780) funded by the Comunidad de Madrid and the project TEC 2013-41730-R and ENE2013-46624-C4-2 from the Spanish MINECO. E. García-Hemme acknowledges the support by a PICATA Predoctoral Fellowship of the Moncloa Campus of International Excellence (UCM-UPM).
Unesco subjects
Keywords
Citation
1) J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park, Adv. Mater., 18(20), 2720 (2006). 2) K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science, 300(5623), 1269–1272 (2003). 3) T. Minami, Semicond. Sci. Technol., 20(4), S35–S44 (2005). 4) D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett., 81(10), 1830–1832 (2002). 5) K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park, Appl. Phys. Lett., 83(1), 63–65 (2003). 6) J. M. Langer, C. Delerue, M. Lannoo, H. Heinrich, Phys. Rev. B, 38(11), 7723–7739 (1988). 7) C. J. Vesely, D. W. Langer, Phys. Rev. B, 4(2), 451 (1971). 8) U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys., 98(4), 041301 (2005). 9) H. Saeki, H. Tabata, T. Kawai, Solid State Commun., 120(11), 439–443 (2001). 10) J. T. Luo, X. Y. Zhu, B. Fan, F. Zeng, F. Pan, J. Phys. D: Appl. Phys., 42(11), 115109 (2009). 11) M. E. Koleva, P. A. Atanasov, N. N. Nedialkov, H. Fukuoka, M. Obara, Appl. Surf. Sci., 254(4), 1228–1231 (2007). 12) A. Mhamdi, A. Boukhachem, M. Madani, H. Lachheb, K. Boubaker, A. Amlouk, M. Amlouk, Optik, 124(18), 3764–3770 (2013). 13) S. Ramachandran, A. Tiwari, J. Narayan, J. T. Prater, Appl. Phys. Lett., 87(17), 172502 (2005). 14) W. T. Liu, J. Cao, W. Fan, Z. Hao, M. C. Martin, Y. R. Shen, J. Wu, F. Wang, Nano Lett., 11(2), 466–470 (2011). 15) T. Zhai, H. Liu, H. Li, X. Fang, M. Liao, L. Li, H. Zhou, Y. Koide, Y. Bando, D. Goberg, Adv. Mater., 22(23), 2547–2552 (2010). 16) W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, Phys. Rev. Lett., 82(6), 1221–1224 (1999). 17) J. Wu, W. Shan, W. Walukiewicz, Semicond. Sci. Technol., 17(8), 860–869 (2002). 18) N. López, L. A. Reichertz, K. M. Yu, K. Campman, W. Walukiewicz, Phys. Rev. Lett., 106(2), 028701 (2011). 19) W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, M. J. Seong, H. Alawadhi, A. K. Ramdas, Phys. Rev. Lett., 85(7), 1552–1555 (2000). 20) P. W. Anderson, Phys. Rev., 124(1), 41 (1961).
Collections