Publication:
Nonrelativistic limit in the 2+1 Dirac oscillator: a Ramsey-interferometry effect

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-03-18
Authors
Bermúdez, A.
Martín Delgado, Miguel Ángel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the nonrelativistic limit of a paradigmatic model in relativistic quantum mechanics, the two-dimensional Dirac oscillator. Remarkably, we find a different kind of Zitterbewegung which persists in this nonrelativistic regime, and leads to an observable deformation of the particle orbit. This effect can be interpreted in terms of a Ramsey-interferometric phenomenon, allowing an insightful connection between relativistic quantum mechanics and quantum optics. Furthermore, subsequent corrections to the nonrelativistic limit, which account for the usual spin-orbit Zitterbewegung, can be neatly understood in terms of a Mach-Zehnder interferometer.
Description
©2008 The American Physical Society. We acknowledge financial support from the Spanish MEC project No. FIS2006-04885, the project No. CAM-UCM/910758 (A.B. and M.A.M.D.) and the UCM project No. PR1-A/07-15378 (A.L.). Additionally, we acknowledge support from a FPU MEC grant (A.B.), and the ESF Science Programme INSTANS 2005-2010 (M.A.M.D.).
Keywords
Citation
[1] M. Moshinsky and A. Szczepaniak, J. Phys. A 22, L817 (1989). [2] D. Ito, K. Mori, and E. Carrieri, Nuovo Cimento A 51, 1119 (1967). [3] P. A. Cook, Lett. Nuovo Cimento Soc. Ital. Fis. 10, 419 (1971). [4] C. Quesne and M. Moshinsky, J. Phys. A 23, 2263 (1990). [5] M. Moreno and A. Zentella, J. Phys. A 22, L821 (1989). [6] J. Benitez, R. P. Martinez y Romero, H. N. Nuñez-Yepez, and A. L. Salas-Brito, Phys. Rev. Lett. 64, 1643 (1990). [7] R. P. Martinez y Romero, M. Moreno, and A. Zentella, Phys. Rev. D 43, 2036 (1991). [8] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963). [9] P. Rozmej and R. Arvieu, J. Phys. A 32, 5367 (1999). [10] R. Arvieu and P. Rozmej, Phys. Rev. A 50, 4376 (1994). [11] R. Arvieu and P. Rozmej, Phys. Rev. A 51, 104 (1995). [12] P. Rozmej and R. Arvieu, J. Phys. B 29, 1339 (1996). [13] D. Leibfried, R. Blatt, C. Monroe, and D.Wineland, Rev. Mod. Phys. 75, 281 (2003). [14] A. Bermudez, M. A. Martin-Delgado, and E. Solano, Phys. Rev. A 76, 041801(R) (2007). [15] N. F. Ramsey, Molecular Beams (Oxford University Press, New York, 1985_; Rev. Mod. Phys. 62, 541 (1990). [16] W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000). [17] V. Villalba, Phys. Rev. A 49, 586 (1994). [18] There are two possible situations where the relativistic system is mapped onto the usual Jaynes-Cummings modelIn an active procedure, the substitution _→−_ in Eq. (3) leads to the chiral partner Hamiltonian of the Dirac oscillator which can be directly mapped onto a Jaynes-Cummings interactionConversely, we may regard __↑_ as the ground state and __↓_ as the excited state, with a simultaneous change of sign in the detuning _. This passive procedure is of no consequence since quantum optical detunings can experimentally attain both positive and negative values. [19] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions. Basic Processes and Applications (Wiley-VCH, Weinheim, 2004). [20] P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag, Berlin, 1999). [21] A. E. Siegman, Lasers (University Science Books, Sausalito, California, 1986). [22] M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N. Zagury, Phys. Rev. Lett. 65, 976 (1990); M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, ibid. 77, 4887 (1996). [23] A. B. Klimov and L. L. Sánchez-Soto, Phys. Rev. A 61, 063802 (2000). [24] B. W. Shore and P. L. Knight, J. Mod. Opt. 40, 1195 (1993). [25] W. Vogel and R. L. de Matos Filho, Phys. Rev. A 52, 4214 (1995).
Collections