Publication:
Reconstruction of inclined air showers detected with the pierre Auger Observatory

Research Projects
Organizational Units
Journal Issue
Abstract
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60 degrees detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
Description
© IOP Publising LTD 2014. Autoría conjunta: Pierre Auger Collaboration. Artículo firmado por mas de 400 autores. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants # 2010/07359-6, # 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and the Czech Science Foundation grant 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grant Nos. ERA-NET-ASPERA/01/11 and ERA-NET-ASPERA/02/11, National Science Centre, Grant Nos. 2013/08/M/ST9/00322, 2013/08/M/ST9/00728 and 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr.20/2012 and nr.194/2012, project nr.1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme for research - Space Technology and Advanced Research - STAR, project number 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02-04ER41300, and DE-FG02-99ER41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation, U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
UCM subjects
Keywords
Citation
[1] Pierre Auger collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50. [2] A. M. Hillas, in Proceedings of the 11th ICRC, Budapest, Hungry, Acta Phys. Acad. Sci. Hung. 29 (1970) 533. [3] M. Ave, R. A. Vazquez, and E. Zas, Modelling horizontal air showers induced by cosmic rays, Astropart. Phys. 14 (2000) 91 [astro-ph/0011490]. [4] M. Ave, R. A. Vazquez, E. Zas, J. A. Hinton, and A. A. Watson, The rate of cosmic ray showers at large zenith angles: A step towards the detection of ultra-high energy neutrinos by the Pierre Auger Observatory, Astropart. Phys. 14 (2000) 109 [astro-ph/0003011]. [5] V. M. Olmos Gilbaja, A Complete method to obtain the energy spectrum of inclined cosmic rays detected with the Pierre Auger Observatory (PhD thesis), University of Santiago de Compostela, Spain (2009). [6] H. Dembinski, Measurement of the ultra-high energy cosmic ray flux using data from very inclined air showers at the Pierre Auger Observatory (PhD thesis), RWTH Aachen University, Germany (2009). [7] R. A. Vazquez, for the Pierre Auger collaboration, The cosmic ray flux observed at zenith angles larger than 60◦ with the Pierre Auger Observatory, in Proceedings of the 31st ICRC, Lódz, Poland (2009) [arXiv:0906.2189]. [8] H. Dembinski, for the Pierre Auger collaboration, The cosmic ray spectrum above 4×10^18 eV as measured with inclined showers recorded at the Pierre Auger Observatory, in Proceedings of the 32nd ICRC, Beijing, China, 2 (2011) 101 [arXiv:1107.4809]. [9] A. Schulz, for the Pierre Auger collaboration, The measurement of the energy spectrum of cosmic rays above 3×1017 eV with the Pierre Auger Observatory, in Proceedings of the 33rd ICRC, Rio de Janeiro, Brasil (2013) [arXiv:1307.5059]. [10] M. Ave, J. A. Hinton, R. A. Vazquez, A. A. Watson and E. Zas, New constraints from Haverah Park data on the photon and iron fluxes of UHE cosmic rays, Phys. Rev. Lett. 85 (2000) 2244 [astro-ph/0007386]. [11] M. Ave, J. A. Hinton, R. A. Vazquez, A. A. Watson, and E. Zas, Sensitivity of the Auger Observatory to ultra high energy photon composition through inclined showers, Phys. Rev. D 67 (2003) 043005 [astro-ph/0208228]. [12] V. S. Berezinsky and A. Y. .Smirnov, Cosmic neutrinos of ultra-high energies and detection possibility, Astrophys. Space Sci. 32 (1975) 461. [13] K. S. Capelle, J. W. Cronin, G. Parente and E. Zas, On the detection of ultrahigh-energy neutrinos with the Auger Observatory, Astropart. Phys. 8 (1998) 321 [astro-ph/9801313]. [14] Pierre Auger collaboration, X. Bertou et al., Calibration of the surface array of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 568 (2006) 839. [15] I. Valino, J. Alvarez-Muniz, M. Roth, R. A. Vazquez, and E. Zas, Characterisation of the electromagnetic component in ultra-high energy inclined air showers, Astropart. Phys. 32 (2010) 304 [arXiv:0910.2873]. [16] Pierre Auger collaboration, J. Abraham et al., The Fluorescence Detector of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 620 (2010) 227 [arXiv:0907.4282]. [17] M. Unger, B. R. Dawson, R. Engel, F. Schussler, and R. Ulrich, Reconstruction of Longitudinal Profiles of Ultra-High Energy Cosmic Ray Showers from Fluorescence and Cherenkov Light Measurements, Nucl. Instrum. Meth. A 588 (2008) [arXiv:0801.4309]. [18] Pierre Auger collaboration, J. Abraham et al., A Study of the Effect of Molecular and Aerosol Conditions in the Atmosphere on Air Fluorescence Measurements at the Pierre Auger Observatory, Astropart. Phys. 33 (2010) 108 [arXiv:1002.0366]. [19] T. K.Gaisser and A. M. Hillas, Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers in Proceedings of the 15th ICRC, Plotdiv, Bulgaria, 8 (1977) 353. [20] Pierre Auger collaboration, J. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 613 (2010) 29 [arXiv:1111.6764]. [21] H. P. Dembinski, P. Billoir, O. Deligny, and T. Hebbeker, A phenomenological model of the muon density profile on the ground of very inclined air showers, Astropart. Phys. 34 (2010) 128 [arXiv:0904.2372]. [22] L. Cazon, R. A. Vazquez, A. A. Watson, and E. Zas, Time structure of muonic showers, Astropart. Phys. 21 (2004) 71 [astro-ph/0311223]. [23] M. Ave, J. A. Hinton, R. A. Vazquez, A. A. Watson and E. Zas, Constraints on the ultrahigh-energy photon flux using inclined showers from the Haverah Park array, Phys. Rev. D 65 (2002) 063007 [astro-ph/0110613]. [24] S. Ostapchenko, Non-linear screening effects in high energy hadronic interactions, Phys. Rev. D 74 (2006) 014026 [hep-ph/0505259]. [25] S. J. Sciutto, The AIRES system for air shower simulations: An Update, in Proceedings of the 27th ICRC, Hamburg, Germany, 1 (2001) 237, (Copernicus Gesellschaft, Hamburg, 2001) [astro-ph/0106044]. [26] N. N. Kalmykov and S. S. Ostapchenko, The Nucleus-nucleus interaction, nuclear fragmentation, and fluctuations of extensive air showers, Phys. Atom. Nucl. 56 (1993) 346 [Yad. Fiz. 56N3 (1993) 105]; N. N. Kalmykov, S. S. Ostapchenko and A. I. Pavlov, EAS and a quark - gluon string model with jets, Bull. Russ. Acad. Sci. Phys. 58 (1994) 1966 [Izv. Ross. Akad. Nauk Ser. Fiz. 58N12 (1994) 21]. [27] D. Heck, G. Schatz, T. Thouw, J. Knapp and J. N. Capdevielle, CORSIKA: A Monte Carlo code to simulate extensive air showers, Report FZKA 6019, Forschungszentrum Karlsruhe, 1998. [28] S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model, Phys. Rev. D 83 (2011) 014018 [arXiv:1010.1869]. [29] T. Pierog and K. Werner, EPOS Model and Ultra High Energy Cosmic Rays, Nucl. Phys. Proc. Suppl. 196 (2009) 102–105 [arXiv:0905.1198]. [30] T. Pierog, I. .Karpenko, J. M. Katzy, E. Yatsenko and K. Werner, EPOS LHC : test of collective hadronization with LHC data [arXiv:1306.0121]. [31] R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, Nucleus-nucleus collisions and interpretation of cosmic-ray cascades Phys. Rev. D 46 (1992) 5013; R. S. Fletcher, T. K. Gaisser, P. Lipari, and T. Stanev, SIBILL: An event generator for simulation of high energy cosmic ray cascades, Phys. Rev. D 50 (1994) 5710. [32] M. Ave, J. A. Hinton, R. A. Vazquez, A. A. Watson and E. Zas, A New approach to inferring the mass composition of cosmic rays at energies above 10**18 eV, Astropart. Phys. 18 (2003) 367 [astro-ph/0112071]. [33] Pierre Auger collaboration, J. Abraham et al., Observation of the suppression of the flux of cosmic rays above 4 × 1019eV, Phys. Rev. Lett. 101 (2008) 061101 [arXiv:0806.4302]. [34] S. Argiro, S. L. C. Barroso, J. Gonzalez, L. Nellen, T. C. Paul, T. A. Porter, L. Prado, Jr. And M. Roth et al., The Offline Software Framework of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 580 (2007) 1485 [arXiv:0707.1652]. [35] GEANT4 collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250; J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270. [36] G. Rodríguez Fernández, Horizontal air showers at the Pierre Auger Observatory (PhD thesis), University of Santiago de Compostela, Spain (2007). [37] A. M. Hillas, in Proceedings of the 17th ICRC, Paris, France, 8 (1981) 193. [38] Pierre Auger collaboration, C. Bonifazi et al., A model for the time uncertainty measurements in the Auger surface detector array, Astropart. Phys. 28 (2008) 523 [arXiv:0705.1856]. [39] Pierre Auger collaboration, C. Bonifazi, The angular resolution of the Pierre Auger Observatory, Nucl. Phys. Proc. Suppl. 190 (2009) 20 [arXiv:0901.3138]. [40] I. Valiño, for the Pierre Auger collaboration, A measurement of the muon number in showers using inclined events recorded at the Pierre Auger Observatory, in Proceedings of the 33rd ICRC, Rio de Janeiro, Brasil (2013) [arXiv:1307.5059]. [41] Pierre Auger collaboration, A measurement of the muon number in showers using inclined events detected at the Pierre Auger Observatory, in preparation. [42] J. Alvarez-Muniz, R. Engel, T. K. Gaisser, J. A. Ortiz and T. Stanev, Atmospheric shower fluctuations and the constant intensity cut method, Phys. Rev. D 66 (2002) 123004 [astro-ph/0209117]. [43] R. Pesce, for the Pierre Auger collaboration, Update of the energy calibration of data recorded with the surface detector of the Pierre Auger Observatory, in Proceedings of the 32nd ICRC, Beijing, China, 2 (2011) 214 [arXiv:1107.4809]. [44] C. Song, Longitudinal profile of extensive air showers, Astropart. Phys. 22 (2004) 151. [45] HIRES collaboration, T. Abu-Zayyad et al., A Measurement of the average longitudinal development profile of cosmic ray air showers between 10**17-eV and 10**18-eV, Astropart. Phys. 16 (2001) 1 [astro-ph/0008206]. [46] Pierre Auger collaboration, J. Abraham et al., Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV, Phys. Rev. Lett. 104 (2010) 091101 [arXiv:1002.0699]. [47] H. Dembinski, for the Pierre Auger collaboration, The cosmic ray spectrum above 4 EeV as measured with inclined showers recorded at the Pierre Auger Observatory, in Proceedings of the 32nd ICRC, Beijing, China, 2 (2011) 101 [arXiv:1107.4804]. [48] C. K. Guerard, for the Pierre Auger collaboration, Acceptance of the Pierre Auger Southern Observatory fluorescence detector to neutrino-like air showers, in Proceedings of the 27th ICRC, Hamburg, Germany, 1 (2001) 760, (Copernicus Gesellschaft, Hamburg, 2001). [49] V. Verzi, for the Pierre Auger collaboration, The Energy Scale of the Pierre Auger Observatory, in Proceedings of the 33rd ICRC, Rio de Janeiro, Brasil (2013) [arXiv:1307.5059]. [50] R. C. Geary, The frequency distribution of the quotient of two normal variates, J. R. Stat. Soc. 93 (1930) 442–446. [51] G. Rodriguez, for the Pierre Auger collaboration, Inclined showers at the Pierre Auger Observatory: reconstruction, energy calibration and implications for the muon content, in Proceedings of the 32nd ICRC, Beijing, China, 2 (2011) 95 [arXiv:1107.4809].
Collections