Publication:
Matrix orthogonal laurent polynomials on the unit circle and toda type integrable systems

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-09-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Matrix orthogonal Laurent polynomials in the unit circle and the theory of Toda-like integrable systems are connected using the Gauss–Borel factorization of two, left and a right, Cantero–Morales–Velázquez block moment matrices, which are constructed using a quasi-definite matrix measure. A block Gauss–Borel factorization problem of these moment matrices leads to two sets of biorthogonal matrix orthogonal Laurent polynomials and matrix Szegő polynomials, which can be expressed in terms of Schur complements of bordered truncations of the block moment matrix. The corresponding block extension of the Christoffel–Darboux theory is derived. Deformations of the quasidefinite matrix measure leading to integrable systems of Toda type are studied. The integrable theory is given in this matrix scenario; wave and adjoint wave functions, Lax and Zakharov–Shabat equations, bilinear equations and discrete flows –connected with Darboux transformations–. We generalize the integrable flows of the Cafasso’s matrix extension of the Toeplitz lattice for the Verblunsky coefficients of Szegő polynomials. An analysis of the Miwa shifts allows for the finding of interesting connections between Christoffel–Darboux kernels and Miwa shifts of the matrix orthogonal Laurent polynomials.
Description
©Elsevier. G.A. thanks economical support from the Universidad Complutense de Madrid Program "Ayudas para Becas y Contratos Complutenses Predoctorales en Espana 2011".M.M. thanks economical support from the Spanish "Ministerio de Economia y Competitividad" research project MTM2012-36732-C03-01, Ortogonalidad y aproximacion; teoria y aplicaciones.
Unesco subjects
Keywords
Citation
[1] M. J. Ablowitz, J. F. Ladik, Nonlinear differential-difference equations, Journal of Mathematical Physics 16 (1975) 598-603. [2] M. J. Ablowitz, J. F. Ladik, Nonlinear differential-difference equations and Fourier analysis, Journal of Mathematical Physics 17 (1976) 1011-1018. [3] M. Adler, P. van Moerbeke, Group factorization, moment matrices and Toda lattices, International Mathematical Research Notices 12 (1997) 556-572. [4] M. Adler, P. van Moerbeke, Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems, Communications in Mathematical Physics 207 (1999) 589-620. [5] M. Adler, P. van Moerbeke, The spectrum of coupled random matrices, Annals of Mathematics 149 (1999) 921-976. [6] M. Adler, P. van Moerbeke, Vertex operator solutions to the discrete KP hierarchy, Communications in Mathematical Physics 203 (1999) 185-210. [7] M. Adler, P. van Moerbeke, Darboux transforms on band matrices, weights and associated polynomials, International Mathematical Research Notices 18 (2001) 935-984. [8] M. Adler, P. van Moerbecke, Integrals over classical groups, random permutations, Toda and Toeplitz lattices, Communications in Pure and Applied Mathematics 54 (2001) 153-205. [9] M. Adler, P. van Moerbeke, P. Vanhaecke, Moment matrices and multi-component KP, with applications to random matrix theory, Communications in Mathematical Physics 286 (2009) 1- 38. [10] M. Alfaro, Una expresi´on de los polinomios ortogonales sobre la circunferencia unidad, Actas III J.M.H.L. (Sevilla, 1974) 2 (1982) 1-8. [11] C. Álvarez-Fernández, U. Fidalgo, M. Mañas, The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems, Inverse Problems 26 (2010) 055009 (17 pp.) [12] C. Álvarez-Fernández, U. Fidalgo, M. Mañas, Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy, Advances in Mathematics 227 (2011) 1451-1525. [13] C. Álvarez-Fernández, M. Mañas, Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies, Advances in Mathematics 240 (2013) 132-193. [14] C. Álvarez-Fernández, M. Mañas, On the Christoffel– Darboux formula for generalized matrix orthogonal polynomial of multigraded Hankel type, arXiv:1311.0563 [math.CA] (2013). [15] R. Álvarez-Nodarse, J. Arvesú, F. Marcellán, Modifications of quasi-definite linear functionals via addition of delta and derivatives of delta Dirac functions, Indagationes Mathematicae 15 (2004) 1-20. [16] M. Ambroladze, On exceptional sets of asymptotics relations for general orthogonal polynomials, Journal of Approximation Theory 82 (1995) 257-273. [17] A. I. Aptekarev, E. M. Nikishin, The scattering problem for a discrete Sturm–Liouville operator, Mathematics of the USSR Sbornik 49 (1984) 325-355 . [18] G. Araznibarreta, M. Mañas, Another Christoffel–Darboux formula for multiple orthogonal polynomials of mixed type, arXiv:1310.7240 [math.CA] (2013). [19] D. Barrios, G. López, Ratio asymptotics for orthogonal polynomials on arcs of the unit circle, Constructive Approximation 15 (1999) 1-31. [20] Yu. M. Berezanskii, Expansions in eigenfunctions of self- adjoint operators, Translations of Mathematical Monographs 17, American Mathematical Society, 1968. [21] M. J. Bergvelt, A. P. E. ten Kroode, Partitions, vertex operators constructions and multi-component KP equations, Pacific Journal of Mathematics 171 (1995) 23-88. [22] E. Berriochoa, A. Cachafeiro, J. Garcia-Amor Connection between orthogonal polynomials on the unit circle and bounded interval, Journal of Computational and Applied Mathematics 177 (2005) 205-223. [23] M. Bertola, M. Gekhtman, Biorthogonal Laurent polynomials, Toeplitz determinants, minimal Toda orbits and isomonodromic tau functions, Constructive Approximation 26 (2007), 383-430. [24] J. Borrego, M. Castro, A. J. Durán, Orthogonal matrix polynomials satisfying differential equations with recurrence coefficients having non-scalar limits, Integral Transforms and Special Functions 23 (2012) 685-700. [25] A. Bultheel, P. González-Vera, E. Hendriksen, O.Njåstad, Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, vol.5, Cambridge University Press, Cambridge (1999). [26] A. Cachafeiro, F. Marcellán, C. Pérez, Lebesgue perturbation of a quasi-definite Hermitian functional. The positive definite case, Linear Algebra and Applications 369 (2003) 235-250. [27] M. Cafasso, Matrix Biorthogonal Polynomials on the unit circle and the non-Abelian Ablowitz-Ladik hierarchy, Journal of Physics A: Mathematical and Theoretical 42 (2009) 365211. [28] M. J. Cantero, L. Moral, F. Marcellan, L. Velázquez, CMV matrices and spectral transformations of measures, talk given in the Matrices and Orthogonal Polynomials Minisymposium in ILAS 2013 Providence, RI, June 3-7, 2013, The 18th Conference of the International Linear Algebra Society. [29] M. J. Cantero, L. Moral, L. Vel´azquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra and Applications 362 (2003) 29-56. [30] M. J. Cantero, L. Moral, L. Velázquez, Differential properties of matrix orthogonal polynomials, Journal of Concrete and Applicable Mathematics v3 (2008) 313-334. [31] G. A. Cassatella-Contra, M. Mañas, Riemann–Hilbert problems, matrix orthogonal polynomials and discrete matrix equations with singularity confinement, Studies in Applied Mathematics 128 (2011) 252–274. [32] G. A. Cassatella-Contra, M. Mañas, P. Tempesta, Singularity confinement for matrix discrete Painlevé equations, arXiv:1311.0557 [math.CA] (2013). [33] L. Cochran, S.C. Cooper, Orthogonal Laurent polynomials on the real line, in: S.C. Cooper, W.J. Thron (Eds.), Continued Fractions and Orthogonal Functions, Lecture Notes in Pure and Applied Mathematics Series, 154, Marcel Dekker, NewYork, 1994, p. 47100. [34] R. D. Costin, Matrix valued polynomials generated by the scalar-type Rodrigues’ formulas, Journal of Approximation Theory 161 (2009) 693-705. [35] R. Cruz-Barroso, L. Daruis, Pablo González-Vera, O. Njastadb, Sequences of orthogonal Laurent polynomials, biorthogonality and quadrature formulas on the unit circle, Journal of Computational and Applied Mathematics 200 (2007) 424-440. [36] R. Cruz-Barroso, S. Delvaux, Orthogonal Laurent polynomials on the unit circle and snake-shaped matrix factorizations, Journal of Approximation Theory 161 (2009) 65-87. [37] R. Cruz-Barroso, P. González-Vera, A Christoffel–Darboux formula and a Favard’s theorem for Laurent orthogonal polynomials on the unit circle, Journal of Computational and Applied Mathematics 179 (2005) 157-173. [38] D. Damanik, A. Pushnitski, B. Simon, The Analytic Theory of Matrix Orthogonal Polynomials, Surveys in Approximation Theory 4, 2008. pp. 1-85. [39] E. Daems, A. B. J. Kuijlaars, Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions, Journal of Approximation Theory 146 (2007) 91-114. [40] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III, Journal of the Physical Society of Japan 50 (1981) 3806-3812. [41] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy, Publications of the Research Institute for Mathematical Sciences 18 (1982) 1077-1110. [42] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations in Nonlinear Integrable Systems- Classical Theory and Quantum Theory M. Jimbo and T. Miwa (eds.) World Scientific, Singapore, 1983, pp. 39-120. [43] C. Díaz-Mendoza, P. González-Vera, M. Jiménez-Paiz, Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation, Mathematics of Computation 74 (2005) 1843-1870. [44] A. J. Durán, F. J. Grünbaum, Orthogonal matrix polynomials, scalar-type Rodrigues’ formulas and Pearson equations, Journal of Approximation Theory 134 (2005) 267-280. [45] A. J. Durán, F. J. Grünbaum, Structural formulas for orthogonal matrix polynomials satisfying second order differential equations, I, Constructive Approximation 22 (2005) 255-271. [46] A. J. Durán, Matrix inner product having a matrix symmetric second order differential operator, Rocky Mountain Journal of Mathematics 27 (1997) 585-600. [47] A. J. Durán, F. J. Grünbaum, Orthogonal matrix polynomials satisfying second order differential equations, International Mathematics Research Notices 10 (2004) 461-484. [48] A. J. Durán, M. D. de la Iglesia, Second order differential operators having several families of orthogonal matrix polynomials as eigenfunctions, International Mathematics Research Notices 2008 (2008) Article ID rnn084, 24 pages. [49] L. Faybusovich, M. Gekhtman, On Schur flows, Journal of Physics A: Mathematical and Geneneral 32 (1999) 4671-4680. [50] L. Faybusovich, M. Gekhtman Elementary Toda orbits and integrable lattices, Journal of Mathematical Physics 41 (2000) 2905-2921. [51] L. Faybusovich, M. Gekhtman, Inverse moment problem for elementary co-adjoint orbits, Inverse Problems 17 (2001), 1295- 1306. [52] R. Felipe, F. Ongay, Algebraic aspects of the discrete KP hierarchy, Linear Algebra and its Applications 338 (2001) 1-17. [53] G. Freud, Orthogonal Polynomials, Akadémiai Kiadó, Budapest and Pergamon Press, Oxford, 1971, 1985. [54] P. García, F. Marcellán, On zeros of regular orthogonal polynomials on the unit circle, Annales Polonici Mathematici 58 (1993) 287-298. [55] W. Gautschi, Orthogonal Polynomials:computation and approximation, Oxford University Press, New York (2004). [56] J. S. Geronimo, Scattering theory and matrix orthogonal polynomials on the real line, Circuits Systems Signal Process 1 (1982) 471-495. [57] Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Series and Approximations, American Mathematical Society Translations, serie 1, vol. 3, Amer. Math. Soc., Providence, RI (1962), 1-78. [58] E. Godoy, F. Marcellán, Orthogonal polynomials on the unit circle: distribution of zeros, Journal of Computational and Applied Mathematics 37 (1991) 195-208. [59] L. Golinskii, Schur flows and orthogonal polynomials on the unit circle, Sbornik: Mathematics 197 (2006) 1145. [60] L. Golinskii and A. Zlatos, Coefficients of orthogonal polynomials on the unit circle and higher order Szegő theorems, Construtive Approximation 26 (2007) 361-382. [61] G. H. Golub, C. F. Van Loan, Matrix Computations, third ed., The John Hopkins University Press, Baltimore, CA, 1996. [62] F. Grünbaum, M. D. de la Iglesia, A. Martínez-Finkelshtein, Properties of matrix orthogonal polynomials via their Riemann- Hilbert characterization, SIGMA 7 (2011), 098, 31 pages. [63] W. B. Jones, O. Njåstad, Applications of Szegő polynomials to digital signal processing, Rocky Mountain Journal of Mathematics 21 (1991) 387-436. [64] W. B. Jones, O. Njåstad,W.J. Thron, Two-point Pade expansions for a family of analytic functions, Journal of Computational and Applied Mathematics 9 (1983) 105.123. [65] W.B. Jones, O. Njåstad, W. J. Thron, H. Waadeland, Szegő polynomials applied to frequency analysis, Journal of Computational and Applied Mathematics 46 (1993) 217-228. [66] W. B. Jones, W.J. Thron, Orthogonal Laurent polynomials and Gaussian quadrature, in: K.E. Gustafson, W.P. Reinhardt (Eds.), Quantum Mechanics in Mathematics Chemistry and Physics, Plenum, NewYork, 1981, pp. 449-455. [67] W. B. Jones,W.J. Thron, H.Waadeland, A strong Stieltjes moment problem, Transactions of the American Mathematical Society 261 (1980) 503-528. [68] R. Killip and I. Nenciu, CMV: The unitary analogue of Jacobi matrices, Communications on Pure and Applied Mathematics 60 (2006) 1148-1188. [69] M. G. Krein, Infinite J-matrices and a matrix moment problem, Doklady Akademii Nauk SSSR 69 (1949) 125-128. [70] M. G. Krein, Fundamental aspects of the representation theory of hermitian operators with deficiency index (m,m), AMS Translations, Series 2, vol. 97, Providence, Rhode Island, 75-143, 1971. [71] M. Mañas, L. Martínez Alonso, E. Medina, Dressing methods for geometric nets: I. Conjugate nets, Journal of Physics A: Mathematical and General 33 (2000) 2871. [72] M. Mañas, L. Mart´ínez Alonso, E. Medina, Dressing methods for geometric nets: II. Orthogonal and Egorov nets, Journal of Physics A: Mathematical and General 33 (2000) 7181. [73] M. Mañas, L. Martínez Alonso and C. Alvarez-Fernández, The multicomponent 2D Toda hierarchy: discrete flows and string equations, Inverse Problems 25 (2009) 065007 (31 pp). [74] H. N. Mhaskar, E.B. Saff, On the distribution of zeros of polynomials orthogonal on the unit circle, Journal of Approximation Theory 63 (1990) 30-38. [75] L. Miranian, Matrix valued orthogonal polynomials on the real line: some extensions of the classical theory, Journal of Physics A: Mathematical and General 38 (2005) 5731-5749. [76] A. Mukaihira, Y. Nakamura, Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, Journal of Computational and Applied Mathematics 139 (2002) 75-94. [77] M. Mulase, Complete integrability of the Kadomtsev– Petviashvili equation, Advances in Mathematics 54 (1984) 57-66. [78] I. Nenciu, Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle. International Mathematics Research Notices 11, (2005) 647-686. [79] P. Nevai, V. Totik, Orthogonal polynomials and their zeros, Acta Scientiarum Mathematicarum Szeged 53 (1-2) (1989) 99- 104. [80] O. Njåstad, W. J. Thron, The theory of sequences of orthogonal L-polynomials, in: H. Waadeland, H. Wallin (Eds.), Pade Approximants and Continued Fractions, Det Kongelige Norske Videnskabers Selskabs Skrifter, 1983, pp. 54.91. [81] K. Pan, Asymptotics for Szegő polynomials associated with Wiener–Levinson filters, Journal of Computational and Applied Mathematics 46 (1993) 387-394. [82] K. Pan, E. B. Saff, Asymptotics for zeros of Szegő polynomials associated with trigonometric polynomials signals, Journal of Approximation Theory 71 (1992) 239-251. [83] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Research Institute for Mathematical Sciences Kokyuroku 439 (1981) 30-46. [84] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloquium Series, American Mathematical Society, Providence, RI, (2005). [85] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloquium Series, American Mathematical Society, Providence, RI, (2005). [86] B. Simon, CMV matrices: Five years after, Journal of Computational and Applied Mathematics 208 (2007) 120-154. [87] B. Simon, Zeros of OPUC and long time asymptotics of Schur and related flows, Inverse Problems Imaging 1 (2007), 189-215. [88] B. Simon, The Christoffel–Darboux Kernel, Proceedings of Symposia in Pure Mathematics 79:“Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday”, (2008) 295-336. arXiv:0806.1528 [math.SP]. [89] B. Simon Szegő’s Theorem and its descendants, Princeton Univertity Press,Princeton, New Jersey (2011). [90] G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, Rhode Island, (1975). [91] W. J. Thron, L-polynomials orthogonal on the unit circle, in: A. Cuyt (Ed.), Nonlinear Methods and Rational Approximation, Reidel Publishing Company, Dordrecht, 1988, pp. 271-278. [92] K. Ueno and K. Takasaki, Toda lattice hierarchy, in Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics 4 (1984) 1-95. [93] D. S. Watkins, Some perspectives on the eigenvalue problem, SIAM Review 35 (1993), 430-471.
Collections