Publication:
On the absolute value of the air-fluorescence yield

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9 +/- 2.0 ph/MeV for the band at 337 nm in dry air at 800 hPa and 293 K, in agreement with experimental values. We have also performed a critical analysis of available absolute measurements of the fluorescence yield with the assistance of our simulation. Corrections have been applied to some measurements to account for a bias in the evaluation of the energy deposition. Possible effects of other experimental aspects have also been discussed. From this analysis, we determined an average fluorescence yield of 7.04 +/- 0.24 ph/MeV at the above conditions. (C) 2014 Elsevier B.V. All rights reserved.
Description
© Elsevier Science BV 2014. This work was supported by MINECO (FPA2009-07772, FPA2012-39489-C04-02) and CONSOLIDER CPAN CSD2007-42. We thank our colleagues of the Auger Collaboration for fruitful discussions and comments on this work.
UCM subjects
Keywords
Citation
[1] T. Abu-Zayyad et al., Nucl. Instrum. Meth. A 450 (2000) 253. [2] J. Abraham et al., Nucl. Instr. Meth. A 620 (2010) 227. [3] H. Tokuno et al., Nucl. Instr. Meth. A 676 (2012) 54. [4] F. Kajino et al., 33rd International Cosmic-Ray Conference (Rio de Janeiro, 2013), paper 1128. [5] A.E. Grün and E. Schopper, Z. Naturforsch A 9 (1954) 134; A.E. Grün, Can. J. Phys. 36 (1958) 858. [6] O. Stern and M. Volmer, Physik. Zeitschrift, 20 (1919) 183. [7] F. Blanco and F. Arqueros, Phys. Lett. A 345 (2005) 355. [8] F. Arqueros et al., Astropart. Phys. 26 (2006) 231. [9] F. Arqueros, F. Blanco and J. Rosado, Nucl. Instrum. Meth. A 597 (2008) 94. [10] F. Arqueros, F. Blanco and J. Rosado, New J. Phys. 11 (2009) 065011. [11] J. Rosado, F. Blanco and F. Arqueros, Astropart. Phys. 34 (2010) 164. [12] F. Kakimoto et al., Nucl. Instrum. Meth. A 372 (1996) 205. [13] M. Nagano et al., Astropart. Phys. 22 (2004) 235. [14] G. Lefeuvre et al., Nucl. Instrum. Meth. A 578 (2007) 78. [15] P. Colin et al. [MACFLY Collaboration], Astropart. Phys. 27 (2007) 317. [16] R. Abbasi et al. [FLASH Collaboration], Astropart. Phys. 29 (2008) 77. [17] T. Waldenmaier et al., Astropart. Phys. 29 (2008) 205. [18] T. Dandl, T. Heindl and A. Ulrich, JINST 7 (2012) P11005. [19] M. Ave et al. [AIRFLY Collaboration], Astropart. Phys. 42 (2013) 90. [20] J. Rosado, F. Blanco and F. Arqueros, Average value of available measurements of the absolute air-fluorescence yield, unpublished manuscript. Available at http://arxiv.org/abs/1103.2022. [21] J. Rosado, Analysis of the air uorescence induced by electrons for application to cosmic-ray detection, PhD Thesis, Universidad Complutense de Madrid, 2011. [22] J. Rosado, F. Blanco and F. Arqueros, AIP Conf. Proc. 1367 (2011) 34. [23] J. Rosado et al., EPJ Conf. 53 (2013) 10001. Available at http://arxiv.org/abs/1207.2913. [24] J. Rosado and F. Arqueros, 33rd International Cosmic-Ray Conference (Rio de Janeiro, 2013), paper 377. [25] R.M. Sternheimer, Phys. Rev. 88 (1952) 851. [26] J. Rosado et al., Nucl. Instrum. Meth. A 597 (2008) 83. [27] A. Allisy et al., Stopping Powers for Electrons and Positrons (ICRU Report No. 37, 1984); M.J. Berger et al., ESTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons (ver. 1.2.3, 2005, NIST). Available at http://physics.nist.gov/Star. [28] S. Agostinelli et al., Nucl. Instrum. Meth. A 506 (2003) 250. [29] M. Risse and D. Heck, Astropart. Phys. 20 (2004) 661. [30] Y.-K. Kim et al., Electron impact cross sections for ionization and excitation (ver. 3.0, 2004, NIST). Available at http://physics.nist.gov/ionxsec. [31] Y. Itikawa, J. Phys. Chem. Ref. Data 35 (2006) 31. [32] Y. Itikawa et al., J. Phys. Chem. Ref. Data 18 (1989) 23. [33] M. Ave et al. [AIRFLY Collaboration], Astropart. Phys. 28 (2007) 41. [34] J.T. Fons, R.S. Schappe and C.C. Lin, Phys. Rev. A 53 (1996) 2239. [35] G. Dilecce, P.F. Ambrico and S. De Benedictis, Chem. Phys. Lett. 431 (2006) 241. [36] A. Morozov et al., Eur. Phys. J. D 46 (2008) 51; A. Morozov et al., Nucl. Instr. Meth. A 597 (2008) 105. [37] M. Ave et al. [AIRFLY Collaboration], Nucl. Instrum. Meth. A 597 (2008) 50. [38] W.R. Nelson, H. Hiragrama and D.W.O. Rogers, The EGS4 Code System (Stanford Linear Accelerator Center, SLAC-265, 1985). [39] T. Waldenmaier et al., 8th Air-Fluorescence Workshop (Karlsruhe, 2011). Available at http://www.kceta.kit.edu/downloads/Talk Waldenmaier.pdf [40] C.B. Opal, E.C. Beaty and W.K. Peterson, At. Data 4 (1972) 209. [41] V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Relativistic Quantum Theory (vol. 4, part 1 of A Course of Theoretical Physics), Pergamon Press (1971). [42] T.W. Shyn, Phys. Rev. A 27 (1983) 2388. [43] R.R. Goruganthu, W.G. Wilson and R.A. Bonham, Phys. Rev. A 35 (1987) 540. [44] Y.-K. Kim, J.P. Santos and F. Parente, Phys. Rev. A 62 (2000) 052710. [45] J.M. Fernández-Varea et al., Nucl. Instrum. Meth. B 229 (2005) 187. [46] F. Blanco and G. García, Phys. Lett. A 317 (2003) 458. [47] A. Roldán et al., J. Appl. Phys. 95 (2004) 5868.
Collections