Publication:
Vectorial Darboux transformations for the Kadomtsev-Petviashvili hierarchy

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider the vectorial approach to the binary Darboux transformations for the Kadomtsev-Petviashvili hierarchy in its Zakharov-Shabat formulation. We obtain explicit formulae for the Darboux transformed potentials in terms of Grammian type determinants. We also study the n-th Gel'fand-Dickey hierarchy introducing spectral operators and obtaining similar results. We reduce the above-mentioned results to the Kadomtsev-Petviashvili I and II real forms, obtaining corresponding vectorial Darboux transformations. In particular for the Kadomtsev-Petviashvili I hierarchy, we get the line soliton, the lump solution, and the Johnson-Thompson lump, and the corresponding determinant formulae for the nonlinear superposition of several of them. For Kadomtsev-Petviashvili II apart from the line solitons, we get singular rational solutions with its singularity set describing the motion of strings in the plane. We also consider the I and II real forms for the Gel'fand-Dickey hierarchies obtaining the vectorial Darboux transformation in both cases.
Description
©Springer.
Unesco subjects
Keywords
Citation
[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press (1991). [2] M. J. Ablowitz and J. Satsuma, J. Math. Phys. 19 (1978) 2180. [3] M. J. Ablowitz and H. Segur, J. Fluid Mech. 92 (1979) 691. [4] M. J. Ablowitz, D. BarYaacov and A. S. Fokas, Stud. Appl. Math 69 (1983) 135. [5] M. J. Ablowitz and J. Villarroel, Phys. Rev. Lett. 78 (1997) 570. [6] E. Arbarello and C. de Concini, Ann. Math. 120 (1984) 119. M. Mulase, Proc. Japan Acad. Ser. A59 285, J. Diff. Geom. 19 (1984) 403. T. Shiota, Inven. Math. 83 (1986) 333. [7] V. L. Arkadiev, A. K. Pogrebkov and M. C. Polivanov, Inverse Problems 5, (1989) L1. [8] C. Athorne and J. J. C. Nimmo, Inverse Problems 7 (1991) 809. [9] E. Brezin and V. Kazakov, Phys. Lett. 236B (1990) 144. M. Douglas and M. Shenker, Nucl. Phys. B335 (1990) 685. D. Gross and A. Migdal, Phys. Rev. Lett. 64 (1990) 127. [10] L.-L. Chau, J. C. Shaw and H. C. Yen, Commun. Math. Phys. 149 (1992) 263. [11] V. S. Dryuma, Sov. Phys. JETP Lett. 19 (1974) 381. [12] A. S. Fokas and M. J. Ablowitz, Stud. Appl. Math. 69 (1983) 211. [13] A. S. Fokas and L.-Y. Sung, Inv. Prob. 8 (1992) 673. [14] A. S. Fokas and V. E. Zakharov, J. Nonlin. Sci. 2 (1992) 109. [15] I. M. Gel’fand, Lectures on Linear Algebra, Dover (1961). [16] I. M. Gel’fand and L. A. Dikii, Func. Anal. Appl. 10 (1976) 259. [17] G. Darboux, C. R. Acad. Sci. Paris 94 (1882) 1456. [18] L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific (1991). E. Date, M. Kashiwara, M. Jimbo and T. Miwa, in Non-linear Integrable Systems —Classical Theory and Quantum Theory M. Jimbo and T. Miwa (eds.), p39, World Scientific (1983). M. Mulase, in Perspectives in Mathematical Physics, R. Penner and S. -T. Yau (eds.), p157, International Press Company (1994). [19] R. S. Johnson and S. Thompson, Phys. Lett. 66A (1978) 279. [20] B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl. 15 (1970) 539. [21] B. G. Konopelchenko, Solitons in Multidimensions, World Scientific (1993). [22] D. Levi, Inverse Problems 4 (1988) 165. [23] S. V. Manakov, Physica 3D (1981) 420. A. S. Fokas and M. J. Ablowitz, Phys. Lett. A94 (1983) 67. M. Boiti, J. J.-P. Leon and F. Pempinelli, Phys. Lett. A141 (1989) 101. [24] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its and V. B. Matveev, Phys. Lett. 63A (1977) 205. [25] V. B. Matveev, Lett. Math. Phys. 3 (1979) 213. [26] V. B. Matveev, Lett. Math. Phys. 3 (1979) 503. [27] V. B. Matveev and M. A. Salle, in Some Topics in Inverse Problems, ed. P. C. Sabatier, World Scientific (1988), pp 182. [28] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag (1991). [29] S. Miyake, Y. Ohta and J. Satsuma, J. Phys. Soc. Japan 59 (1990) 48. [30] A. Nakamura, J. Phys. Soc. Japan 58 (1989) 412. [31] J. J. C. Nimmo, in Nonlinear Evolution Equations and Dynamical Systems , V. G. Makhankov, A. R. Bishop and D. D. Holm (eds.), p168, World Scientific (1995). [32] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Transform Method, Plenum Press (1984). [33] W. Oevel, Physica A195 (1993) 533. [34] W. Oevel and C. Rogers, Rev. Math. Phys. 5 (1993) 299. [35] W. Oevel and W. Schief, in Applications of Analytic and Geometrical Methods to Nonlinear Differential Equations, P. A. Clarkson (ed.), p193, Kluwer Academic Publisher (1993). [36] D. Pelinovsky, J. Math. Phys. 35 (1994) 5820. [37] J. Satsuma and M. J. Ablowitz, J. Math. Phys. 20 (1979) 1496. [38] F. Schottky, Angew. Math. 102 (1888) 304. [39] T. Takebe, Int. J. Mod. Phys. A7, Suppl. 1B (1992) 923. [40] E. Witten, Surv. Diff. Geom. 1 (1991) 243. M. Kontsevich, Commun. Math. Phys. 147 (1992) 1. [41] V. E. Zakharov and A. B. Shabat, Func. Anal. Appl. 8 (1974) 226.
Collections