Publication:
Generating quadrilateral and circular lattices in KP theory

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-11-08
Authors
Doliwa, Adam
Mañas Baena, Manuel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The bilinear equations of the N-component KP and BKP hierarchies and a corresponding extended Miwa transformation allow us to generate quadrilateral and circular lattices from conjugate and orthogonal nets, respectively. The main geometrical objects are expressed in terms of Baker functions.
Description
©Physics letters A.
Unesco subjects
Keywords
Citation
[1] L. Bianchi, Lezioni di Geometria Differenziale, 3-a ed., Zanichelli, Bologna (1924). [2] A. Bobenko, in Symmetries and Integrability of Difference Equations II, P. Clarkson and F. Nijhoff (eds.), Cambridge University Press, Cambridge (1997). [3] L. V. Bogdanov and B. G. Konopelchenko, J. Math. Phys. 39 (1998) 4701. [4] J. Ciéslínski, A. Doliwa and P. M. Santini, Phys. Lett. A235 (1997) 480. [5] G. Darboux, Le¸cons sur la théorie générale des surfaces IV, GauthierVillars, Paris (1896) Reprinted by Chelsea Publishing Company, New York (1972). [6] G. Darboux, Le¸cons sur les systèmes orthogonaux et les coordenées curvilignes (deuxième édition), Gauthier-Villars, Paris (1910) (the first edition was in 1897). Reprinted by Éditions Jacques Gabay, Sceaux (1993). [7] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, J. Phys. Soc. Japan 50 (1981) 3806. [8] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Physica D4 (1982) 343. [9] E. Date, M. Jimbo and T. Miwa, J. Phys. Soc. Japan 51 (1982) 4116, 4125; 52 (1983) 388, 761, 766. [10] M. A. Demoulin, Comp. Rend. Acad. Sci. Paris 150 (1910) 156. [11] A. Doliwa, Quadratic reductions of quadrilateral lattices, solv-int/9802011. [12] A. Doliwa, S. V. Manakov and P. M. Santini, ¯∂-Reductions of the Multidimensional Quadrilateral Lattice I: the Multidimensional Circular Lattice. Commun. Math. Phys. (in press). [13] A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina and P. M. Santini, Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets, solv-int/9803015. [14] A. Doliwa and P. M. Santini, Phys. Lett. A 233 (1997) 365. [15] A. Doliwa, P. M. Santini and M. Mañas, Transformations for Quadrilateral Lattices, solv- int/9712017. [16] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., Boston (1909). [17] L. P. Eisenhart, Trans. Amer. Math. Soc. 18 (1917) 111. [18] L. P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton (1923). Reprinted by Chelsea Publishing Company, New York (1962). [19] E. I. Ganzha, On completeness of the Ribaucour transformations for triply orthogonal curvilinear coordinate systems in R 3 , solv-int/9606002. [20] E. I. Ganzha and S. P. Tsarev, On superposition of the autoBäcklund transformations for (2+1)-dimensional integrable systems, solv-int/9606003. [21] R. Hirota, J. Phys. Soc. Japan 50 (1981) 3785. [22] H. Jonas, Berl. Math. Ges. Ber. Sitzungsber. 14 (1915) 96. [23] V. G. Kac and J. van de Leur, in Important Developments in Soliton Theory, edited by A. S. Fokas and V. E. Zakharov (Springer, Berlin, 1993) p. 302. [24] B. G. Konopelchenko and W. K. Schief, Three-dimensional Integrable Lattices in Euclidean Space: Conjugacy and Orthogonality, Preprint University of New South Wales (1997). [25] G. Lamé, Le¸cons sur la théorie des coordenées curvilignes et leurs diverses applications, Mallet-Bachalier, Paris (1859). [26] L. Lévy, J. l’Ecole Polytecnique 56 (1886) 63. [27] Q. P. Liu and M. Mañas, Phys. Lett. A239 (1998) 159. [28] Q. P. Liu and M. Mañas, J. Phys. A: Math. & Gen. 31 (1998) L193. [29] Q. P. Liu and M. Mañas, Superposition Formulae for the Discrete Ribaucour Transformations of Circular Lattices, Phys. Lett. A (in press). [30] M. Mañas, A. Doliwa and P. M. Santini, Phys. Lett. A232 (1997) 365. [31] M. Mañas and L. Martinez Alonso, From Ramond Fermions to Lamé Equations for Orthogonal Curvilinear Coordinates, Phys. Lett. B. (in press), solv-int/9805010. [32] R. R. Martin, in The Mathematics of Surfaces, J. Gregory (ed.), Claredon Press, Oxford (1986). [33] T. Miwa, Proc. Japan Acad. A58 (1982) 9. [34] A. W. Nutborne, in The Mathematics of Surfaces, J. Gregory (ed.), Claredon Press, Oxford (1986). [35] A. Ribaucour, Comp. Rend. Acad. Sci. Paris 74 (1872) 1489. [36] M. Sato, RIMS Kokyuroku 439 (1981) 30; in Theta Functions–Bowdoin 1987. Part 1 Proc. Sympos. Pure Maths. 49, part 1, 51, AMS (1989) Providence. [37] R. Sauer, Differenzengeometrie, Springer-Verlag, Berlin (1970) [38] G. Segal and G. Wilson, Publ. Math. I. H. E. S. 61, 5, 1985. [39] V. E. Zakharov, On Integrability of the Equations Describing NOrthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type I: Integration of the Lam´e Equations Preprint (1996). [40] V. E. Zakharov and S. V. Manakov, Func. Anal. Appl. 19 (1985) 11.
Collections