Publication:
Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

Research Projects
Organizational Units
Journal Issue
Abstract
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.
Description
© 2012 IOP Publishing. Artículo firmado por más de 10 autores (The Pierre Auger Collaboration). The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support: Comisión Nacional de Energía Atómica, Fundación Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ministério de Ciência e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, LC527, 1M06002, MSM0021620859 and RCPTM - CZ.1.05/2.1.00/03.0058, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium BadenWürttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium für Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Fundação para a Ciência e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejería de Educación de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovación and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC / HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO.
UCM subjects
Keywords
Citation
[1] PIERRE AUGER collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50. [2] PIERRE AUGER collaboration, J. Abraham et al., The fluorescence detector of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 620 (2010) 227 [arXiv:0907.4282]. [3] PIERRE AUGER collaboration, J. Abraham et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory, Phys. Lett. B 685 (2010) 239 [arXiv:1002.1975]. [4] PIERRE AUGER collaboration, J. Abraham et al., Measurement of the depth of maximum of extensive air showers above 1018 eV, Phys. Rev. Lett. 104 (2010) 091101 [arXiv:1002.0699]. [5] PIERRE AUGER collaboration, J. Kelley, AERA: the Auger Engineering Radio Array, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing China August 2011 [J. Phys. Conf. Ser. 375 (2012) 052006] [arXiv:1107.4807]. [6] PIERRE AUGER collaboration, B. Revenu, Autonomous detection and analysis of radio emission from air showers at the Pierre Auger Observatory, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing China August 2011 [J. Phys. Conf. Ser. 375 (2012) 052006] [arXiv:1107.4807]. [7] PIERRE AUGER collaboration, P. Allison, Microwave detection of cosmic ray showers at the Pierre Auger Observatory, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing China August 2011 [J. Phys. Conf. Ser. 375 (2012) 052006] [arXiv:1107.4807]. [8] J.V. Jelley et al., Radio pulses from extensive cosmic-ray air showers, Nature 205 (1965) 327. [9] H. Allan, R. Clay and J. Jones, Frequency spectrum of air shower radio pulses, Nature 225 (1970) 253. [10] D.J. Fegan and P.P. O’Neill, Lateral distribution of UHF radio emission associated with cosmic ray showers, Nature Phys. 241 (1973) 126. [11] D. Ardouin et al., Radio-detection signature of high-energy cosmic rays by the CODALEMA experiment, Nucl. Instrum. Meth. A 555 (2005) 148 [astro-ph/0504297]. 2012 JINST 7 P10011 [12] LOPES collaboration, H. Falcke et al., Detection and imaging of atmospheric radio flashes from cosmic ray air showers, Nature 435 (2005) 313 [astro-ph/0505383]. [13] H. Falcke and P. Gorham, Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope, Astropart. Phys. 19 (2003) 477 [astro-ph/0207226]. [14] T. Huege and H. Falcke, Radio emission from cosmic ray air showers: coherent geosynchrotron radiation, Astron. Astrophys. 412 (2003) 19 [astro-ph/0309622]. [15] PIERRE AUGER collaboration, S. Fliescher, Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory, Nucl. Instrum. Meth. A 662 (2012) S124. [16] PIERRE AUGER collaboration, C. Ruehle, Advanced digital self-triggering of radio emission of cosmic rays, Nucl. Instrum. Meth. A 662 (2012) S146. [17] H. Gemmeke et al., Advanced detection methods of radio signals from cosmic rays for KASCADE Grande and Auger, Int. J. Mod. Phys. A 21 (2006) 242. [18] PIERRE AUGER collaboration, M. Stephan, Antennas, filters and preamplifiers designed for the radio detection of ultra-high-energy cosmic rays, in Proceedings of Asia-Pacific-Microwave Conference, Yokohama Japan (2010), pg. 1455. [19] PIERRE AUGER collaboration, O. Seeger, Logarithmic periodic dipole antennas for the Auger Engineering Radio Array, Nucl. Instrum. Meth. A 662 (2012) S138. [20] H.H. Beverage, Antenna, US patent 2,247,743, U.S.A. (1941). [21] B. Antokhonov et al., TUNKA-133: a new array for the study of ultra-high energy cosmic rays, Bull. Russ. Acad. Sci. Phys. 75 (2011) 367. [22] LOPES collaboration, H. Gemmeke, New antenna for radio detection of UHECR, in Proceedings of the 31st International Cosmic Ray Conference, Łod´ z Poland (2009). ´ [23] CODALEMA collaboration, D. Charrier, Design of a low noise, wide band, active dipole antenna for a cosmic ray radiodetection experiment, IEEE Anten. Propag. Soc. Internat. Symp. (2007) 4485. [24] CODALEMA collaboration, O. Ravel, The CODALEMA experiment, Nucl. Instrum. Meth. A 662 (2012) S89. [25] PIERRE AUGER and CODALMA collaborations, B. Revenu, Radio detection of cosmic ray air showers by the RAuger experiment, a fully autonomous and self-triggered system installed at the Pierre Auger Observatory, Nucl. Instrum. Meth. A 662 (2012) S130. [26] CODALEMA collaboration, D. Charrier, Antenna development for astroparticle and radioastronomy experiments, Nucl. Instrum. Meth. A 662 (2012) S142. [27] C.R. Anderson, An introduction to ultra wideband communication systems, Prentice Hall Communications Engineering and Emerging Technologies Series, Prentice Hall U.S.A. (2005). [28] M. Thumm et al., Hochfrequenzmesstechnik: Verfahren und Messsysteme (in German), Teubner, Stuttgart Germany (1997). [29] G. Burke and A. Poggio, Numerical Electromagnetics Code (NEC) method of moments, part I, technical report, Lawrence Livermore National Laboratory, Livermore U.S.A. (1977); Numerical Electromagnetics Code (NEC) method of moments, part II, technical report, Lawrence Livermore National Laboratory, Livermore U.S.A. (1981); Numerical Electromagnetics Code (NEC) method of moments, part III, technical report, Lawrence Livermore National Laboratory, Livermore U.S.A. (1983). [30] R.C. Jones, A new calculus for the treatment of optical systems, J. Opt. Soc. Am. 31 (1941) 488. 2012 JINST 7 P10011 [31] J.P. Hamaker et al., Understanding radio polarimetry. I. Mathematical foundations, Astron. Astrophys. Suppl. 117 (1996) 137. [32] W. Sorgel and W. Wiesbeck, ¨ Influence of the antennas on the ultra-wideband transmission, EURASIP J. App. Sign. Proc. 3 (2005) 296. [33] W.A. Davis and K. Agarwal, Radio frequency circuit design, Wiley Series in Microwave and Optical Engineering, Wiley U.S.A. (2001). [34] H. Carlin, The scattering matrix in network theory, IRE Trans. Circuit Theor. 3 (1956) 88. [35] O. Seeger, Absolute calibration of the small black spider antenna for the Pierre Auger Observatory, Diploma Thesis, RWTH Aachen University, Aachen Germany (2010). [36] O. Kromer, ¨ Empfangssystem zur Radioobservation hochenergetischer kosmischer Schauer und sein Verhalten bei Selbsttriggerung (in German), Ph.D. thesis, University Karlsruhe, Karlsruhe Germany (2008). [37] S. Nehls et al., Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers, Nucl. Instrum. Meth. A 589 (2008) 350 [arXiv:0802.4151]. [38] C.A. Balanis, Antenna theory: analysis and design, John Wiley & Sons Inc., U.S.A. (2005). [39] J.D. Kraus and R.J. Marhefka, Antennas, McGraw-Hill, U.S.A. (2003). [40] Schwarzbeck Mess-Elektronik, BBAL 9136 biconical antenna with VHHBB 9124 balun, private communication, (2007). [41] Rohde & Schwarz, FSH4 (model 24) handheld spectrum analyzer 100 kHz to 3.6 GHz with preamplifier, tracking generator and internal VSWR bridge, private communication, (2009). [42] ITU recommendation P.527-3, ITU-R P.527-3 electrical characteristics of the surface of the earth, ITU-R recommendations & reports, International Telecommunication Union (1992). [43] M. Ludwig and T. Huege, REAS3: Monte Carlo simulations of radio emission from cosmic ray air showers using an “end-point” formalism, Astropart. Phys. 34 (2011) 438 [arXiv:1010.5343]. [44] O. Scholten, K. Werner and F. Rusydi, A macroscopic description of coherent geo-magnetic radiation from cosmic ray air showers, Astropart. Phys. 29 (2008) 94 [arXiv:0709.2872]. [45] S. Licul, Ultra-wideband antenna characterization and modeling, Ph.D. thesis, Virginia Tech, U.S.A. (2004). [46] A.H. Bridle, The spectrum of the radio background between 13 and 404 MHz, Mon. Not. Roy. Astron. Soc. 136 (1967) 219. [47] K.D. Lawson et al., Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere, Mon. Not. Roy. Astron. Soc. 225 (1987) 307. [48] PIERRE AUGER collaboration, J. Coppens, Observation of radio signals from air showers at the Pierre Auger Observatory, Nucl. Instrum. Meth. A 604 (2009) S41. [49] E. Polisensky, LFmap: a low frequency sky map generating program, Long Wavelength Array (LWA) Memo Ser. 111 (2007). [50] H.V. Cane, Spectra of the non-thermal radio radiation from the galactic polar regions, Mon. Not. Roy. Astron. Soc. 189 (1979) 465. [51] A. De Oliveira-Costa et al., A model of diffuse galactic radio emission from 10 MHz to 100 GHz, Mon. Not. Roy. Astron. Soc. 388 (2008) 247 [arXiv:0802.1525]. 2012 JINST 7 P10011 [52] J.D. Kraus, Radio astronomy, McGraw-Hill Bock Company, U.S.A. (1966). [53] IEEE standard definitions of terms for antennas, IEEE Std. 145-1993, Institute of Electrical and Electronics Engineers, (1993). [54] LOPES collaboration, A. Nigl et al., Direction identification in radio images of cosmic-ray air showers detected with LOPES and KASCADE, Astron. Astrophys. 487 (2008) 781 [arXiv:0809.2742]. [55] S. Fliescher, Antenna devices and measurement of radio emission from cosmic ray induced air showers at the Pierre Auger Observatory, Ph.D. thesis, RWTH Aachen University, Aachen Germany (2011). [56] PIERRE AUGER collaboration, P. Abreu et al., Advanced functionality for radio analysis in the offline software framework of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 635 (2011) 92 [arXiv:1101.4473]. [57] M.E. Brinson and S. Jahn, Qucs: a GPL software package for circuit simulation, compact device modelling and circuit macromodelling from DC to RF and beyond, Int. J. Numer. Model. 22 (2009) 297
Collections