Publication:
Ultrafast atomic diffusion inducing a reversible (23√×23√)R30°↔(3√×3√)R30° transition on Sn/Si(111)∶B

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-05-13
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Dynamical phase transitions are a challenge to identify experimentally and describe theoretically. Here, we study a new reconstruction of Sn on silicon and observe a reversible transition where the surface unit cell divides its area by a factor of 4 at 250 °C. This phase transition is explained by the 24-fold degeneracy of the ground state and a novel diffusive mechanism, where four Sn atoms arranged in a snakelike cluster wiggle at the surface exploring collectively the different quantum mechanical ground states.
Description
©2015 American Physical Society. Artículo firmado por 11 autores. This work was supported by the French Agence Nationale de la Recherche (ANR) under Contract SurMott, No. NT-09-618999, and by Spanish Ministerio de Economía y Competitividad, Project No. MAT2014-59966-R. W. S. and D. G. T. contributed equally to this work.
Keywords
Citation
[1] B. N. J. Persson, Surf. Sci. Rep. 15, 1 (1992). [2] A. Tejeda, Y. Fagot-Revurat, R. Cortés, D. Malterre, E. G. Michel, and A. Mascaraque, Phys. Status Solidi (a) 209, 614 (2012). [3] P. Snijders and H. Weitering, Rev. Mod. Phys. 82, 307 (2010). [4] S. Qin, J. Kim, Q. Niu, and C. Shih, Science 324, 1314 (2009). [5] T. Zhang, P. Cheng, W.-J. Li, Y.-J. Sun, G. Wang, X.-G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H.-Q. Lin, J.-F. Jia, and Q.-K. Xue, Nat. Phys. 6, 104 (2010). [6] G. Li, P. Höpfner, J. Schäfer, C. Blumenstein, S. Meyer, A. Bostwick, E. Rotenberg, R. Claessen, and W. Hanke, Nat. Commun. 4, 1620 (2013). [7] S. C. Erwin and F. J. Himpsel, Nat. Commun. 1, 58 (2010). [8] V. Y. Aristov, L. Douillard, O. Fauchoux, and P. Soukiassian, Phys. Rev. Lett. 79, 3700 (1997). [9] T. Tabata, T. Aruga, and Y. Murata, Surf. Sci. 179, L63 (1987). [10] L. Chaput, C. Tournier-Colletta, L. Cardenas, A. Tejeda, B. Kierren, D. Malterre, Y. Fagot-Revurat, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi, D. G. Trabada, J. Ortega, and F. Flores, Phys. Rev. Lett. 107, 187603 (2011). [11] R. Cortés, A. Tejeda, J. Lobo, C. Didiot, B. Kierren, D. Malterre, E. G. Michel, and A. Mascaraque, Phys. Rev. Lett. 96, 126103 (2006). [12] S. Modesti, L. Petaccia, G. Ceballos, I. Vobornik, G. Panaccione, G. Rossi, L. Ottaviano, R. Larciprete, S. Lizzit, and A. Goldoni, Phys. Rev. Lett. 98, 126401 (2007). [13] G. Profeta and E. Tosatti, Phys. Rev. Lett. 98, 086401 (2007). [14] V. Derycke, P. Soukiassian, F. Amy, Y. Chabal, M. D’Angelo, H. Enriquez, and M. Silly, Nat. Mater. 2, 253 (2003). [15] F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, L. Rettig, M. Krenz, J. H. Chu, N. Ru, L. Perfetti, D. H. Lu, M. Wolf, I. R. Fisher, and Z. X. Shen, Science 321, 1649 (2008). [16] P. Hansmann, T. Ayral, L. Vaugier, P. Werner, and S. Biermann, Phys. Rev. Lett. 110, 166401 (2013). [17] D. G. Trabada and J. Ortega, J. Phys. Condens. Matter 21, 182003 (2009). [18] H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, and S. Hasegawa, Phys. Rev. Lett. 82, 4898 (1999). [19] C. Gonzalez, F. Flores, and J. Ortega, Phys. Rev. Lett. 96, 136101 (2006). [20] S. Wippermann and W. G. Schmidt, Phys. Rev. Lett. 105, 126102 (2010). [21] J. M. Carpinelli, H. H. Weitering, E. W. Plummer, and R. Stumpf, Nature (London) 381, 398 (1996). [22] J. M. Carpinelli, H. H. Weitering, M. Bartkowiak, R. Stumpf, and E. W. Plummer, Phys. Rev. Lett. 79, 2859 (1997). [23] J. Avila, A. Mascaraque, E. G. Michel, M. C. Asensio, G. LeLay, J. Ortega, R. Pérez, and F. Flores, Phys. Rev. Lett. 82, 442 (1999). [24] R. Cortés, A. Tejeda, J. Lobo-Checa, C. Didiot, B. Kierren, D. Malterre, J. Merino, F. Flores, E. G. Michel, and A. Mascaraque, Phys. Rev. B 88, 125113 (2013). [25] S. C. Erwin, Nature (London) 441, 295 (2006). [26] For diffusion of adatoms on metal MLs on Si(111) surfaces, see Refs. [27,28]. [27] S. C Jung and M. H. Kang, Phys. Rev. B 84, 155422 (2011). [28] S. Jeong and H. Jeong, Phys. Rev. B 81, 195429 (2010). [29] C. Didiot, A. Tejeda, Y. Fagot-Revurat, V. Repain, B. Kierren, S. Rousset, and D. Malterre, Phys. Rev. B 76, 081404(R) (2007). [30] J. P. Lewis, P. Jelínek, J. Ortega, A. A. Demkov, D. G. Trabada, B. Haycock, H. Wang, G. Adams, J. K. Tomfohr, E. Abad, H. Wang, and D. A. Drabold, Phys. Status Solidi (b) 248, 1989 (2011). [31] S. Baroni, A. Corso, S. de Gironcoli, and P. Giannozzi, Quantum EXPRESSO, 2005. [32] C. González, P. C. Snijders, J. Ortega, R. Pérez, F. Flores, S. Rogge, and H. H. Weitering, Phys. Rev. Lett. 93, 126106 (2004). [33] See SupplementalMaterial athttp://link.aps.org/supplemental/ 10.1103/PhysRevLett.114.196101 for the reversibility demonstration and modelisation, more information on the electronic properties and simulation of STM images and the experimental coverage determination, which includes Refs. [34–37]. [34] H. Q. Shi, M. W. Radny, and P. V. Smith, Phys. Rev. B 66, 085329 (2002). [35] C. Tournier-Colletta, Ph.D. thesis, Université Henri Poincaré, 2011. [36] J. M. Blanco, C. González, P. Jelínek, J. Ortega, F. Flores, and R. Pérez, Phys. Rev. B 70, 085405 (2004). [37] J. I. Martínez, E. Abad, C. González, F. Flores, and J. Ortega, Phys. Rev. Lett. 108, 246102 (2012). [38] J. E. Northrup, Phys. Rev. B 44, 1419 (1991). [39] T. Ichikawa and K. Cho, Jpn. J. Appl. Phys. 42, 5239 (2003). [40] P. E. J. Eriksson, J. R. Osiecki, K. Sakamoto, and R. I. G. Uhrberg, Phys. Rev. B 81, 235410 (2010). [41] R. Pérez, J. Ortega, and F. Flores, Phys. Rev. Lett. 86, 4891 (2001).
Collections