Publication:
Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-07-07
Authors
Fernández, Victoria
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Research Foundation
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3 Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.
Description
© 2015 Fernández and Khayet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).VF is supported by a Ramón y Cajal contract (MINECO, Spain), co-financed by the European Social Fund. Thanks to Ricardo Fernández for his technical support for the development of this study.
UCM subjects
Unesco subjects
Keywords
Citation
Adão, M. H. V. C., Saramago, B. J. V., and Fernandes, A. C. (1999). Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements. J. Colloid Interface Sci. 217, 94–106. doi: 10.1006/jcis.1999.6279 Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I., et al. (1998). Classification and terminology of plant epicuticular waxes. Bot. J. Linn. Soc. 126, 237–260. doi: 10.1111/j.1095-8339.1998.tb02529.x Berry, Z. C., Hughes, N. M., and Smith, W. K. (2014). Cloud immersion: an important water source for spruce and fir saplings in the southern Appalachian Mountains. Oecologia 174, 319–326. doi: 10.1007/s00442-013-2770-0 Bhushan, B., and Jung, Y. C. (2010). Natural and biomimetic artificial surfaces for superhydrophobicity, self- cleaning, low adhesion, and drag reduction. Prog. Mat. Sci. 56, 1–108. doi: 10.1016/j.pmatsci.2010.04.003 Bhushan, B., and Nosonovsky, M. (2010). The rose petal effect and the modes of superhydrophobicity. Philos. T. R. Soc. A 368, 4713–4728. doi: 10.1098/rsta.2010.0203 Brewer, C. A., and Nuñez, C. I. (2007). Patterns of leaf wettability along an extreme moisture gradient in western Patagonia, Argentina. Int. J. Plant Sci. 168, 555–562. doi: 10.1086/513468 Brewer, C. A., and Smith, W. K. (1997). Patterns of leaf surface wetness for montane and subalpine plants. Plant Cell Environ. 20, 1–11. doi: 10.1046/j.1365-3040.1997.d01-15.x Brewer, C. A., Smith, W. K., and Vogelmann, T. C. (1991). Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant Cell Environ. 14, 955–962. doi: 10.1111/j.1365- 3040.1991.tb00965.x Burkhardt, J., and Hunsche, M. (2013). “Breath figures” on leaf surfaces—formation and effects of microscopic leaf wetness. Front. Plant Sci. 4:422. doi: 10.3389/fpls.2013.00422 Cassie, A., and Baxter, S. (1944). Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551. doi: 10.1039/tf9444000546 Chibowski, E., and Perea Carpio, R. (2002). Problems of contact angle and solid surface free energy determination. Adv. Coll. Interface Sci. 98, 245–264. doi: 10.1016/S0001-8686(01)00097-5 Chibowski, E., and Staszczuk, P. (1988). Determination of surface free energy of kaolinite. Clays Clay Min. 36, 455–461. doi: 10.1346/CCMN.1988.0360511 Correia, N. T., Ramos, J. J. M., Saramago, B. J., and Calado, J. C. (1997). Estimation of the surface tension of a solid: application to a liquid crystalline polymer. J. Colloid Interface Sci. 189, 361–369. doi: 10.1006/jcis.1997.4857 Dann, J. R. (1970). Forces involved in the adhesive process: I. Critical surface tensions of polymeric solids as determined with polar liquids. J. Colloid Interface Sci. 32, 302–320. doi: 10.1016/0021-9797(70)90054-8 Della Volpe, C., Maniglio, D., Brugnara, M., Siboni, S., and Morra, M. (2004). The solid surface free energy calculation: I. In defense of the multicomponent approach. J. Colloid Interface Sci. 271, 434–453. doi: 10.1016/j.jcis.2003.09.049 Della Volpe, C., and Siboni, S. (1997). Some reflections on acid–base solid surface free energy theories. J. Colloid Interface Sci. 195, 121–136. doi: 10.1006/jcis.1997.5124 Dietz, J., Leuschner, C., Hölscher, D., and Kreilein, H. (2007). Vertical patterns and duration of surface wetness in an old-growth tropical montane forest, Indonesia. Flora 202, 111. doi: 10.1016/j.flora.2006.03.004 Eigenbrode, S. D., and Jetter, R. (2002). Attachment to plant surface waxes by an insect predator. Integr. Comp. Biol. 42, 1091–1099. doi: 10.1093/icb/42.6.1091 Eller, C. B., Lima, A. L., and Oliveira, R. S. (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol. 199, 151–162. doi: 10.1111/nph.12248 Fernández, V., and Brown, P. H. (2013). From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front. Plant Sci. 4:289. doi: 10.3389/fpls.2013.00289 Fernández, V., and Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit. Rev. Plant Sci. 28, 36–68. doi: 10.1080/07352680902743069 Fernández, V., Guzmán, P., Peirce, C. A. E., McBeath, T. M., Khayet, M., and McLaughlin, M. J. (2014b). Effect of wheat phosphorus status on leaf surface properties and permeability to foliar applied phosphorus. Plant Soil 384, 7–20. doi: 10.1007/s11104-014-2052-6 Fernández, V., Khayet, M., Montero Prado, P., Heredia Guerrero, J. A., Liakopoulos, G., Karabourniotis, G., et al. (2011). New insights into the properties of pubescent surfaces: peach fruit as a model. Plant Physiol. 156, 2098–2108. doi: 10.1104/pp.111.176305 Fernández, V., Sancho Knapik, D., Guzmán, P., Peguero Pina, J. J., Gil, L., Karabourniotis, G., et al. (2014a). Wettability, polarity and water absorption of holm oak leaves: effect of leaf side and age. Plant Physiol. 166, 168–180. doi: 10.1104/pp.114.242040 Fowkes, F. M. (1962). Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. 66, 382–382. doi: 10.1021/j100808a524 Fowkes, F. M. (1964). Attractive forces at interfaces. Ind. Eng. Chem. 56, 40–52. doi: 10.1021/ie50660a008 Fox, H. W., and Zisman, W. A. (1950). The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J. Coll. Sci. 5, 514–531. doi: 10.1016/0095-8522(50)90044-4 Gindl, M., Sinn, G., Gindl, W., Reiterer, A., and Tschegg, S. (2001). A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Coll. Surf. A 181, 279–287. doi: 10.1016/S0927-7757(00)00795-0 Girifalco, L. A., and Good, R. J. (1957). A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J. Phys. Chem. 61, 904–909. doi: 10.1021/j150553a013 Good, R. J. (1977). Surface free energy of solids and liquids: thermodynamics, molecular forces, and structure. J. Colloid Interface Sci. 59, 398–419. doi: 10.1016/0021-9797(77)90034-0 Gorb, E., Kastner, V., Peressadko, A., Arzt, E., Gaume, L., Rowe, N., et al. (2004). Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. J. Exp. Biol. 207, 2947–2963. doi: 10.1242/jeb.01128 Guzmán, P., Fernández, V., Graça, J., Cabral, V., Kayali, N., Khayet, M., et al. (2014). Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: a lipidized cell wall region. Front. Plant Sci. 5:481. doi: 10.3389/fpls.2014.00481 Hanba, Y. T., Moriya, A., and Kimura, K. (2004). Effect of leaf surface wetness and wettability on photosynthesis in bean and pea. Plant Cell Environ. 27, 413–421. doi: 10.1046/j.1365-3040.2004.01154.x Helmy, A. K., Ferreiro, E. A., and De Bussetti, S. G. (2004). The surface energy of kaolinite. Coll. Polym. Sci. 283, 225–228. doi: 10.1007/s00396-004-1150-z Jañczuk, B., and Białlopiotrowicz, T. (1989). Surface free-energy components of liquids and low energy solids and contact angles. J. Colloid Interface Sci. 127, 189–204. doi: 10.1016/0021-9797(89)90019-2 Jañczuk, B., Białopiotrowicz, T., and Wójcik, W. (1989). The components of surface tension of liquids and their usefulness in determinations of surface free energy of solids. J. Colloid Interface Sci. 127, 59–66. doi: 10.1016/0021-9797(89)90007-6 Jañczuk, B., Białlopiotrowicz, T., and Zdziennicka, A. (1999). Some remarks on the components of the liquid surface free energy. J. Colloid Interface Sci. 211, 96–103. doi: 10.1006/jcis.1998.5990 Jañczuk, B., and Chibowski, E. (1983). Interpretation of contact angle in solid hydrocarbon-water system. J. Colloid Interface Sci. 95, 268–270. doi: 10.1016/0021-9797(83)90096-6 Jañczuk, B., Wójcik, W., and Zdziennicka, A. (1993). Determination of the components of the surface tension of some liquids from interfacial liquidliquid tension measurements. J. Colloid Interface Sci. 157, 384–393. doi: 10.1006/jcis.1993.1200 Javelle, M., Vernoud, V., Rogowsky, P. M., and Gwyneth, C. I. (2011). Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 189, 17–39. doi: 10.1111/j.1469-8137.2010.03514.x Jeffree, C. E., Baker, E. A., and Holloway, P. J. (1975). Ultrastructure and recrystallization of plant epicuticular waxes. New Phytol. 75, 539–549. doi: 10.1111/j.1469-8137.1975.tb01417.x Jetter, R., Kunst, L., and Samuels, A. L. (2006). “Composition of plant cuticular waxes,” in Biology of the Plant Cuticle, Annual Plant Reviews, Vol. 23, eds M. Riederer and C. Müller (Oxford: Blackwell), 145–181. Karabourniotis, G., and Bormann, J. F. (1999). Penetration of UV-A UV-B and blue light through the leaf trichome of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol. Plantarum 105, 655–661. doi: 10.1034/j.1399-3054.1999.105409.x Khayet, M., Chowdhury, G., and Matsuura, T. (2002). Surface modification of polyvinylidene fluoride pervaporation membranes. AIChE J. 48, 2833–2843. doi: 10.1002/aic.690481211 Khayet, M., Feng, C. Y., and Matsuura, T. (2003). Morphological study of fluorinated asymmetric polyetherimide ultrafiltration membranes by surface modifying macromolecules. J. Membr. Sci. 213, 159–180. doi: 10.1016/S0376-7388(02)00523-9 Khayet, M., and Fernández, V. (2012). Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions. Theor. Biol. Med. Model. 9, 45. doi: 10.1186/1742-4682-9-45 Khayet, M., Vázquez Alvarez, M., Khulbe, K. C., and Matsuura, T. (2007). Preferential surface segregation of homopolymer and copolymer blend films. Surf. Sci. 601, 885–895. doi: 10.1016/j.susc.2006.11.024 Koch, K., and Barthlott, W. (2009). Superhydrophobic and super- hydrophilic plant surfaces: an inspiration for biomimetic materials. Philos T. R. Soc. A 367, 1487–1509. doi: 10.1098/rsta.2009.0022 Konrad, W., Ebner, M., Traiser, C., and Roth-Nebelsick, A. (2012). Leaf surface wettability and implications for drop shedding and evaporation from forest canopies. Pure Appl. Geophys. 169, 835–845. doi: 10.1007/s00024-011-0330-2 Kwok, D. Y., Li, D., and Neumann, A. W. (1994). Evaluation of the Lifshitz-van der Waals/acid-base approach to determine interfacial tensions. Langmuir 10, 1323–1328. doi: 10.1021/la00016a057 Kwok, D. Y., and Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Adv. Coll. Interface Sci. 81, 167–249. doi: 10.1016/S0001-8686(98)00087-6 Limm, E. B., and Dawson, T. E. (2010). Polystichum munitum (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. Am. J. Bot. 97, 1121–1128. doi: 10.3732/ajb.1000081 Morra, M. (1996). Some reflection on the evaluation of the Lewis acid–base properties of polymer surfaces by wetting measurements. J. Colloid Interface Sci. 182, 312–314. doi: 10.1006/jcis.1996.0469 Oliveira, R. S., Dawson, T. E., and Burgess, S. O. (2005). Evidence for direct water absorption by the shoot of the dessication-tolerant plant Vellozia flavicans in the savannas of central Brazil. J. Tropical Ecol. 21, 585–588. doi: 10.1017/S0266467405002658 Owens, D. K., and Wendt, R. C. (1969). Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747. doi: 10.1002/app.1969.070130815 Panzer, J. (1973). Components of solid surface free energy from wetting measurements. J. Colloid Interface Sci. 44, 142–161. doi: 10.1016/0021-9797(73)90201-4 Prüm, B., Seidel, R., Bohn, H. F., and Speck, T. (2012). Plant surfaces with cuticular folds are slippery for beetles. J. R. Soc. Interface 9, 127–135. doi: 10.1098/rsif.2011.0202 Reicosky, D. A., and Hanover, J. W. (1978). Physiological effects of surface waxes. Plant Physiol. 62, 101–104. doi: 10.1104/pp.62.1.101 Riederer, M. (2006). “Introduction: biology of the plant cuticle,” in Biology of the Plant Cuticle, Annual Plant Reviews, Vol. 23, eds M. Riederer and C. Müller (Oxford: Blackwell), 1–10. Riederer, M., and Schreiber, L. (2001). Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023–2032. doi: 10.1093/jexbot/52.363.2023 Rosado, B. H., and Holder, C. D. (2013). The significance of leaf water repellency in ecohydrological research: a review. Ecohydrology 6, 150–161. doi: 10.1002/eco.1340 Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., et al. (2012). Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J. R. Soc. Interface 9, 1965–1974. doi: 10.1098/rsif.2011.0847 Saa, S., Olivos Del Rio, A., Castro, S., and Brown, P. H. (2015). Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Front. Plant Sci. 6:87. doi: 10.3389/fpls.2015.00087 Serrano, M., Coluccia, F., Torres, M., L’Haridon, F., and Métraux, J. P. (2014). The cuticle and plant defense to pathogens. Front. Plant Sci. 5:274. doi: 10.3389/fpls.2014.00274 Shepherd, T., and Wynne Griffiths, D. (2006). The effects of stress on plant cuticular waxes. New Phytol. 171, 469–499. doi: 10.1111/j.1469-8137.2006.01826.x Tretinnikov, O. N. (2000). On neglecting the polar nature of halogenated hydrocarbons in the surface energy determination of polar solids from contact angle measurements. J. Colloid Interface Sci. 229, 644–647. doi: 10.1006/jcis.2000.7024 Urrego Pereira, Y. F., Martínez Cob, A., Fernández, V., and Cavero, J. (2013). Daytime sprinkler irrigation effects on net photosynthesis of maize and alfalfa. Agron. J. 105, 1515–1528. doi: 10.2134/agronj2013.0119 van Oss, C. J. (1994). Interfacial Forces in Aqueous Media. New York, NY: Marcel Dekker, 440. van Oss, C. J., Chaudhury, M. K., and Good, R. J. (1987). Monopolar surfaces. Adv. Colloid Interface Sci. 28, 35–64. doi: 10.1016/0001-8686(87)80008-8 van Oss, C. J., Chaudhury, M. K., and Good, R. J. (1988). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88, 927–941. doi: 10.1021/cr00088a006 Van Oss, C. J., Good, R. J., and Chaudhury, M. K. (1986). The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111, 378–390. doi: 10.1016/0021-9797(86)90041-X Wang, H., Shi, H., Li, Y., and Wang, Y. (2014). The effects of leaf roughness, surface free energy and work of Adhesion on leaf water drop adhesion. PLoS ONE 9:e107062. doi: 10.1371/journal.pone.0107062 Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994. doi: 10.1021/ie50320a024 Wu, S. (1971). Calculation of interfacial tension in polymer systems. J. Polym. Sci. C, 34, 193. doi: 10.1002/polc.5070340105 Wu, S. (Ed). (1982). “Contact angles of liquids on solid polymers,” in Polymer Interface and Adhesion, (New York, NY: Marcel Dekker), 67–168. Young, T. (1805). An essay on the cohesion of fluids. Philos. Trans. R. Soc. London 95, 65–87. doi: 10.1098/rstl.1805.0005
Collections