Publication:
Elliptic solutions in the Neumann-Rosochatius system with mixed flux

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-06-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Closed strings spinning in AdS_3 x S^3 x T^4 with mixed Ramond-Ramond and Neveu-Schwarz-NeveuSchwarz three-form fluxes are described by a deformation of the one-dimensional Neumann-Rosochatius integrable system. In this articlewe find general solutions to this systemthat can be expressed in terms of elliptic functions. We consider closed strings rotating either in S^3 with two different angularmomenta or in AdS_3 with one spin. To find the solutions, we will need to extend the Uhlenbeck integrals of motion of the Neumann-Rosochatius system to include the contribution from the flux. In the limit of pure Neveu-Schwarz-NeveuSchwarz flux, where the problem can be described by a supersymmetricWess-Zumino-Witten model, we find exact expressions for the classical energy in terms of the spin and the angular momenta of the spinning string.
Description
© 2015 American Physical Society. The work of R. H. is supported by MICINN through a Ramon y Cajal contract and Grant No. FPA2011-24568 and by BSCH-UCM through Grant No. GR58/08-910770. J. M. N. wishes to thank the Instituto de Fisica Teorica UAM-CSIC for kind hospitality during this work.
Unesco subjects
Keywords
Citation
[1] A. Babichenko, B. Stefański, Jr., and K. Zarembo, Integrability and the AdS3=CFT2 correspondence, J. High Energy Phys. 03 (2010) 058. [2] K. Zarembo, Strings on semisymmetric superspaces, J. High Energy Phys. 05 (2010) 002; , Algebraic Curves for Integrable String Backgrounds, arXiv:1005.1342. [3] O. O. Sax and B. Stefański, Jr., Integrability, spin-chains and the AdS3=CFT2 correspondence, J. High Energy Phys. 08 (2011) 029. [4] N. Rughoonauth, P. Sundin, and L. Wulff, Near BMN dynamics of the AdS3 × S3 × S3 × S1 superstring, J. High Energy Phys. 07 (2012) 159. [5] O. O. Sax, B. Stefański, Jr., and A. Torrielli, On the massless modes of the AdS3=CFT2 integrable systems, J. High Energy Phys. 03 (2013) 109. [6] C. Ahn and D. Bombardelli, Exact S-matrices for AdS3=CFT2, Int. J. Mod. Phys. A 28, 1350168 (2013); R. Borsato, O. O. Sax, and A. Sfondrini, A dynamic suð1j1Þ2 S-matrix for AdS3=CFT2, J. High Energy Phys. 04 (2013) 113; All-loop Bethe ansatz equations for AdS3=CFT2, J. High Energy Phys. 04 (2013) 116; R. Borsato, O. O. Sax, A. Sfondrini, B. Stefański, Jr., and A. Torrielli, The all-loop integrable spin-chain for strings on AdS3 × S3 × T4: the massive sector, J. High Energy Phys. 08 (2013) 043; R. Borsato, O. O. Sax, A. Sfondrini, and B. Stefański, Jr., All-loop worldsheet S matrix for AdS3 × S3 × T4, Phys. Rev. Lett. 113, 131601 (2014); R. Borsato, O. O. Sax, A. Sfondrini, and B. Stefański, Jr., The complete AdS3 × S3 × T4 worldsheet S-matrix, J. High Energy Phys. 10 (2014) 66. [7] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini, and A. A. Tseytlin, Quantum corrections to spinning superstrings in AdS3 × S3 × M4: determining the dressing phase, J. High Energy Phys. 04 (2013) 006; M. Beccaria and G. Macorini, Quantum corrections to short folded superstring in AdS3 × S3 × M4, J. High Energy Phys. 03 (2013) 040; R. Borsato, O. O. Sax, A. Sfondrini, B. Stefański, Jr., and A. Torrielli, Dressing phases of AdS3=CFT2, Phys. Rev. D 88, 066004 (2013); M. C. Abbott, The AdS3 × S3 × S3 × S1 Hernández-López phases: a semiclassical derivation, J. Phys. A 46, 445401 (2013); M. C. Abbott and I. Aniceto, Macroscopic (and Microscopic) Massless Modes, Nucl. Phys. B894, 75 (2015); An improved AFS phase for AdS3 string integrability, Phys. Lett. B 743, 61 (2015). [8] P. Sundin and L. Wulff, Worldsheet scattering in AdS3=CFT2, J. High Energy Phys. 07 (2013) 007. [9] T. Lloyd and B. Stefański, Jr., AdS3=CFT2, finite-gap equations and massless modes, J. High Energy Phys. 04 (2014) 179. [10] P. Sundin, Worldsheet two- and four-point functions at one loop in AdS3=CFT2, Phys. Lett. B 733, 134 (2014). [11] A. Sfondrini, Towards integrability for AdS3=CFT2, J. Phys. A 48, 023001 (2015). [12] A. Cagnazzo and K. Zarembo, B-field in AdS3=CFT2 Correspondence and Integrability, J. High Energy Phys. 11 (2012) 133; 04 (2013) 003. [13] B. Hoare and A. A. Tseytlin, On string theory on AdS3 × S3 × T4 with mixed 3-form flux: Tree-level S-matrix, Nucl. Phys. B873, 682 (2013); Massive S-matrix of AdS3 × S3 × T4 superstring theory with mixed 3-form flux, Nucl. Phys. B873, 395 (2013). [14] B. Hoare, A. Stepanchuk, and A. A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS3 × S3 × T4 with mixed flux, Nucl. Phys. B879, 318 (2014). [15] C. Ahn and P. Bozhilov, String solutions in AdS3 × S3 × T4 with NS-NS B-field, Phys. Rev. D 90, 066010 (2014). [16] J. R. David and A. Sadhukhan, Spinning strings and minimal surfaces in AdS3 with mixed 3-form fluxes, J. High Energy Phys. 10 (2014) 49. [17] A. Banerjee, K. L. Panigrahi, and P. M. Pradhan, “Spiky strings on AdS3 × S3 with NS-NS flux, Phys. Rev. D 90, 106006 (2014). [18] A. Babichenko, A. Dekel, and O. O. Sax, Finite-gap equations for strings on AdS3 × S3 × T4 with mixed 3-form flux, J. High Energy Phys. 11 (2014) 122. [19] L. Bianchi and B. Hoare, AdS3 × S3 × M4 string S-matrices from unitarity cuts, J. High Energy Phys. 08 (2014) 097. [20] R. Roiban, P. Sundin, A. Tseytlin, and L. Wulff, The one-loop worldsheet S-matrix for the AdSn × Sn × T10−2n superstring, J. High Energy Phys. 08 (2014) 160. [21] T. Lloyd, O. O. Sax, A. Sfondrini, and B. Stefański, Jr., The complete worldsheet S matrix of superstrings on AdS3 × S3 × T4 with mixed three-form flux, Nucl. Phys. B891, 570 (2015). [22] P. Sundin and L. Wulff, One- and two-loop checks for the AdS3 × S3 × T4 superstring with mixed flux, J. Phys. A 48, 105402 (2015). [23] A. Stepanchuk, String theory in AdS3 × S3 × T4 with mixed flux: semiclassical and 1-loop phase in the S-matrix, J. Phys. A 48, 195401 (2015). [24] G. Arutyunov, S. Frolov, J. Russo, and A. A. Tseytlin, Spinning strings in AdS5 × S5 and integrable systems, Nucl. Phys. B671, 3 (2003); G. Arutyunov, J. Russo, and A. A. Tseytlin, Spinning strings in AdS5 × S5: New integrable system relations, Phys. Rev. D 69, 086009 (2004). [25] R. Hernández and J. M. Nieto, “Spinning strings in AdS3 × S3 with NS-NS flux, Nucl. Phys. B888, 236 (2014). [26] K. Uhlenbeck, Equivariant harmonic maps into spheres, Lect. Notes Math. 949, 146 (1982). [27] O. Babelon and M. Talon, Separation of variables for the classical and quantum Neumann model, Nucl. Phys. B379, 321 (1992). [28] F. Delduc, M. Magro, and B. Vicedo, An Integrable Deformation of the AdS5 × S5 Superstring Action, Phys. Rev. Lett. 112, 051601 (2014). [29] G. Arutyunov and D. Medina-Rincón, Deformed Neumann model from spinning strings on ðAdS5 × S5Þ η, J. High Energy Phys. 10 (2014) 50; T. Kameyama and K. Yoshida, “A new coordinate system for q-deformed AdS5 × S5 and classical string solutions, J. Phys. A 48, 075401 (2015).
Collections