Publication:
Rotating relativistic stars: matching conditions and kinematical properties

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In the framework of general relativity, a description of the matching conditions between two rotating perfect fluids spacetimes in terms of the kinematical properties of the fluids is introduced. The Einstein and Darmois equations are written using coordinates adapted to the boundary separating both spacetimes. The functions appearing in the equations have an immediate physical interpretation. The analysis is extended to the case of matching a perfect fluid spacetime (star interior) with a vacuum spacetime (gravitational field outside the star). By solving a boundary problem for a first order partial differential equation (‘‘master equation’’) we define an exterior tetrad such that the matching conditions and the Einstein equations, for this case, reproduce those of the two-fluid problem. The formalism is applied to a particular static spherically symmetric star and to the Kerr metric.
Description
©2003 The American Physical Society. The present work has been supported in part by DGICYT Project PB98-0772. The author wishes to thank F. J. Chinea, L. Fernández-Jambrina, F. Navarro-Lérida and M. J. Pareja for valuable discussions.
Unesco subjects
Keywords
Citation
[1]. G. Darmois, Mémorial des Sciences Mathe´matiques (GauthierVillars, Paris, 1927), Vol. 25. [2]. A. Lichnerowicz, Théories Relativistes de la Gravitation et de l’Electromagnétism (Masson, Paris, 1955). [3]. S. O’Brien and J.L. Synge, Comm. Dublin Inst. Adv. Stud. Ser. A 9, 1 (1952). [4]. W. Israel, Nuovo Cimento B B44, 1 (1966). [5]. W.B. Bonnor and P.A. Vickers, Gen. Relativ. Gravit. 13, 29 (1981). [6]. L. Herrera and J. Jimenéz, Phys. Rev. D 28, 2987 (1983). [7] A.H. Taub, J. Math. Phys. 21, 1423 (1979). [8] C.J.S. Clarke and T. Dray, Class. Quantum Grav. 4, 265 (1987). [9]. C. Barrabes and W. Israel, Phys. Rev. D 43, 1129 (1991); C. Barrabes, Class. Quantum Grav. 6, 581 (1989). [10]. M. Mars and J.M.M. Senovilla, Class. Quantum Grav. 10, 1865 (1993). [11]. R. Vera, Class. Quantum Grav. 19, 5249 (2002). [12]. G. Neugebauer and R. Meinel, Phys. Rev. Lett. 73, 2166 (1994). [13]. M. Mars and J.M.M. Senovilla, Mod. Phys. Lett. A A 13, 1509 (1998). [14]. M. Bradley, G. Fodor, M. Marklud, and Z. Perjés, Class. Quantum Grav. 17, 351 (2000). [15]. E. Kyriakopoulos, Gen. Relativ. Gravit. 21, 125 (1989). [16] I. Hauser and F.J. Ernst, Gen. Relativ. Gravit. 33, 1985 (2001). [17] J.L. Friedman, J.R. Ipser, and L. Parker, Nature (London) 312, 255 (1984); Y. Eriguchi, I. Hachisu, and K. Nomoto, Mon. Not. R. Astron. Soc. 266, 179 (1994); M. Salgado, S. Bonazzola, E. Gourgoulhon, and P. Hanesel, Astron. Astrophys. 291, 155 (1994); G.B. Cook, S.L. Shapiro, and S.A. Teukolsky, Astrophys. J. 424, 823 (1994); N. Stergioulas and J.L. Friedman, ibid. 444, 306 (1995). [18] T. Nozawa, N. Stergioulas, E. Gourgoulhon, and Y. Eriguchi, Astron. Astrophys., Suppl. Ser. 132, 431 (1998); J.A. Font et al. Phys. Rev. D 65, 084024 (2002). [19]. S. Bonazzola, E. Gourgoulhon, and J.-A. Marck, Phys. Rev. D 58, 104020 (1998). [20]. F.J. Chinea and L.M. Gonza´lez-Romero, Class. Quantum Grav. 9, 1271 (1992). [21]. L.M. González-Romero, Class. Quantum Grav. 11, 2741 (1994). [22]. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time (Cambridge University Press, Cambridge, England, 1973). [23]. R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity (McGraw-Hill, New York, 1965). [24]. The surface Σ is static in the sense that the induced metric admits a Killing field k =δ_t such that dk_↓˄k_↓ = 0 where k_↓ is the 1-form obtained from k using the induced metric.
Collections