Publication:
Exterior differential system for cosmological G_2 perfect fluids and geodesic completeness

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper a new formalism based on exterior differential systems is derived for perfect-fluid spacetimes endowed with an abelian orthogonally transitive G_2 group of motions acting on spacelike surfaces. This formulation allows simplifications of Einstein equations and it can be applied for different purposes. As an example a singularity-free metric is rederived in this framework. A sufficient condition for a diagonal metric to be geodesically complete is also provided.
Description
© Amer Physical Soc. The present work has been supported by Dirección General de Enseñanza Superior Project PB95-0371. The authors wish to thank F. J. Chinea and M. J. Pareja for valuable discussions.
Unesco subjects
Keywords
Citation
[1] El Escorial Summer School on Gravitation and General Relativity 1992: Rotating Objects and Other Topics (eds.: F. J. Chinea and L. M. GonzálezRomero), Springer-Verlag, Berlin-New York (1993). [2] D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact Solution’s of Einstein’s Field equations Cambridge University Press, Cambridge (1980). [3] J. Wainwright, J. Phys. A, 14, 1131, (1981). [4] J.B. Griffiths, Colliding Plane Gravitational Waves in General Relativity. Oxford University Press, (1991). [5] M. MacCallum in Solutions of Einstein’s equations: Techniques and Results (eds.: C. Hoenselaers and W. Dietz, Springer Verlag), Berlin-New York (1984). [6] A. Krasiński, Physics in an Inhomogeneous Universe, N. Copernicus Astronomical Centre, (1993). [7] J. M. M. Senovilla, Phys. Rev D53, 1799, (1996). [8] J. M. M. Senovilla, Gen. Rel. Grav. 30, 701, (1998). [9] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, (1973). [10] J. Beem, P. Ehrlich, K. Easley, Global Lorentzian Geometry, Dekker, New York (1996). [11] F. J. Chinea and L. M. González-Romero, Class. Quantum Grav. 9, 1271 (1992). [12] P. J. Greenberg, J. Math. Anal. Appl.. 29, 647 (1970). [13] L. Fernández-Jambrina, Class. Quantum Grav., 14, 3407, (1997). [14] J. Ehlers, Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. Kl.. 11, 793 (1961), Gen. Rel. Grav. 25, 1225. 11, (1993). [15] G. F. R. Ellis, General Relativity and Cosmology, XLVII Enrico Fermi Summer School Proc., ed. R. K. Sachs, Academic Press, New York (1971). [16] F. J. Chinea, Class. Quantum Grav. 5, 135 (1988). [17] J.M.M. Senovilla in Recent Developments in Gravitation and Mathematical Physics. Proceedings of the 1st Mexican School on Gravitation and Mathematical Physics, (eds. A. Marcos, T. Mato, O,. Obreg´on, H. Quevedo), World Scientific (1996). [18] L.M. González-Romero, Ph. D. Thesis, Universidad Complutense de Madrid (1991) [19] J. Wainwright, W.C.W. Ince, B.J. Marshman, Gen. Rel. Grav. 10, 259 (1979). [20] R. Geroch, J. Math. Phys. 2, 437 (1969). [21] J. M. M. Senovilla, Phys. Rev. Lett. 64, 2219, (1990). [22] F. J. Chinea, L. Fern´andez-Jambrina, J. M. M. Senovilla, Phys. Rev D45, 481, (1992). [23] E. Ruiz, J. M. M. Senovilla, Phys. Rev D45, 1995, (1992). [24] M. Mars, Class. Quantum Grav. 12 2831, (1995).
Collections