Publication:
Impedance spectroscopy of epitaxial multiferroic thin films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-06-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Temperature dependent impedance spectroscopy enables the many contributions to the dielectric and resistive properties of condensed matter to be deconvoluted and characterized separately. We have achieved this for multiferroic epitaxial thin films of BiFeO_(3) (BFO) and BiMnO_(3) (BMO), key examples of materials with strong magnetoelectric coupling. We demonstrate that the true film capacitance of the epitaxial layers is similar to that of the electrode interface, making analysis of capacitance as a function of film thickness necessary to achieve deconvolution. We modeled non-Debye impedance response using Gaussian distributions of relaxation times and reveal that conventional resistivity measurements on multiferroic layers may be dominated by interface effects. Thermally activated charge transport models yielded activation energies of 0.60± 0.05 eV (BFO) and 0.25± 0.03 eV (BMO), which is consistent with conduction dominated by oxygen vacancies (BFO) and electron hopping (BMO). The intrinsic film dielectric constants were determined to be 320± 75 (BFO) and 450± 100 (BMO).
Description
© 2007 The American Physical Society. We are grateful to M. E. Vickers for helping with the x-ray analysis and to J. F. Scott and N. D. Mathur for the useful discussions. This work was funded by the Royal Society F.D.M., an EU Marie Curie Fellowship W.E., and the Leverhulme Trust R.S.. R.S. would like to thank J. Aguilar for the kind invitation for a research visit to FIME at UANL Monterrey Mexico.
Unesco subjects
Keywords
Citation
1) N. A. Spaldin, M. Fiebig, Science, 309, 391, 2005. 2) W. Eerenstein, N. D. Mathur, J. F. Scott, Nature (London), 442, 759, 2006. 3) S.-W. Cheong, M. Mostovoy, Nat. Mater., 6, 13, 2007. 4) R. Ramesh, N. A. Spaldin, Nat. Mater., 6, 21, 2007. 5) J. R. Teague, R. Gerson, W. J. James, Solid State Commun., 8, 1073, 1970. 6) H. Chiba, T. Atou, Y. Syono, J. Solid State Chem., 132, 139, 1997. 7) J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science, 299, 1719, 2003. 8) T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, R. Ramesh, Nat. Mater., 5, 823, 2006. 9) T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B, 67, 180401(R), 2003. 10) J. R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987). --- A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983). 11) J. T. S. Irvine, D. C. Sinclair, A. R. West, Adv. Mater. (Weinheim, Ger.) 2, 132, 1990. 12) S. Song, F. Plácido, J. Stat. Mech.: Theory Exp., 2004, P10018, 2004. 13) V. V. Sazonov, Normal Approximation: Some Recent Advances (Springer, Berlin, 1981). 14) S. Rodewald, J. Fleig, J. Maier, J. Am. Ceram. Soc., 84, 521, 2001. 15) S. H. Liu, Phys. Rev. Lett., 55, 529, 1985. 16) B. H. Armstrong, J. Quant. Spectrosc. Radiat. Transf., 7, 61, 1967. 17) V. R. Palkar, J. John, R. Pinto, Appl. Phys. Lett., 80, 1628, 2002. 18) Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, Z. G. Liu, Appl. Phys. Lett., 84, 1731, 2004. 19) K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, M. Okuyama, Jpn. J. Appl. Phys., Part 2, 43, L647, 2004. 20) J. Dho, X. Qi, H. Kim, J. L. MacManus-Driscoll, M. G. Blamire, Adv. Mater. (Weinheim, Ger.) 18, 1445, 2006. 21) Y.-H. Chu, Q. Zhan, L. W. Martin, M. P. Cruz, P.-L. Yang, G. W. Pabst, F. Zavaliche, S.-Y. Yang, J.-X. Zhang, L.-Q. Chen, D. G. Schlom, I.-N. Lin, T.-B. Wu, R. Ramesh, Adv. Mater. (Weinheim, Ger.) 18, 2307, 2006. 22) C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, W. J. James, Solid State Commun., 7, 701, 1969. 23) F. Kubel, H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci., 46, 698, 1990. 24) G. A. Smolenskii, V. Yudin, E. S. Sher, Y. E. Stolypin, Sov. Phys. JETP, 16, 622, 1963. 25) S. V. Kiselev, R. P. Ozerov, G. S. Zhdanov, Sov. Phys. Dokl., 7, 742, 1963. 26) I. Sosnovska, T. Peterlin-Neumaier, E. Steichele, J. Phys. C, 15, 4835, 1982. 27) W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire, J. F. Scott, N. D. Mathur, Science, 307, 1203a, 2005. 28) H. Béa, M. Bibes, A. Barthélémy, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Appl. Phys. Lett., 87, 072508, 2005. 29) M. Bai, J. L. Wang, M. Wuttig, J. F. Li, N. G. Wang, A. P. Pyatakov, A. K. Zvezdin, L. E. Cross, D. Viehland, Appl. Phys. Lett., 86, 032511, 2005. 30) J. Wang, A. Scholl, H. Zheng, S. B. Ogale, D. Viehland, D. G. Schlom, N. A. Spaldin, K. M. Rabe, M. Wuttig, L. Mohaddes, J. Neaton, U. Waghmare, T. Zhao, R. Ramesh, Science, 307, 1203b, 2005. 31) I. G. Ismailzade, Phys. Status Solidi B, 46, K39, 1971. 32) K. W. Yun, M. Noda, M. Okuyama, Appl. Phys. Lett., 83, 3981, 2003. 33) Y.-H. Lee, J.-M. Wu, Y.-L. Chueh, L.-J. Chou, Appl. Phys. Lett., 87, 172901, 2005. 34) K. Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, J. Appl. Phys., 96, 3399, 2004. 35) X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus Driscoll, Appl. Phys. Lett., 86, 062903, 2005. 36) E. Ascher, H. Rieder, H. Schmid, H. Stoessel, J. Appl. Phys., 37, 1404, 1966. 37) T. Kimura, G. Lawes, T. Goto, Y. Tokura, A. P. Ramírez, Phys. Rev. B, 71, 224425, 2005. 38) N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, S. W. Cheong, Nature (London), 429, 392, 2004. 39) Y. Y. Tomashpolskii, Y. N. Venevtsev, G. S. Zhdanov, Sov. Phys. JETP, 46, 1921, 1964. 40) M. M. Kumar, V. R. Palkar, K. Srinivas, S. V. Suryanarayana, Appl. Phys. Lett., 76, 2764, 2000. 41) F. Sugawara, S. Iiida, Y. Syono, S.-i. Akimoto, J. Phys. Soc. Jpn., 25, 1553, 1968. 42) H. Faqir, H. Chiba, M. Kikuchi, Y. Syono, M. Mansori, P. Satre, A. Sebaoun, J. Solid State Chem., 142, 113, 1999. 43) T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono, J. Solid State Chem., 145, 639, 1999. 44) W. Eerenstein, F. D. Morrison, J. F. Scott, N. D. Mathur, Appl. Phys. Lett., 87, 101906, 2005. 45) R. Seshadri and N. A. Hill, Chem. Mater., 13, 2892, 2001. 46) A. Moreira dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, C. N. R. Rao, Solid State Commun., 122, 49, 2002. 47) C.-H. Yang, T. Y. Koo, S.-H. Lee, C. Song, K.-B. Lee, Y. H. Jeong, Europhys. Lett., 74, 348, 2006. 48) T. Zhao, H. Lu, F. Chen, S. Dai, G. Yang, Z. Chen, J. Cryst. Growth, 212, 451, 2000. 49) M. Dawber, K. M. Rabe, J. F. Scott, Rev. Mod. Phys., 77, 1083, 2005. 50) C. H. Hsu, F. Mansfeld, Corrosion (Houston) 57, 747, 2001. 51) S. Yakovlev, J. Zekonyte, C.-H. Spolterbeck, M. Es-Souni, Thin Solid Films, 493, 24, 2005. 52) J. R. Taylor, An Introduction to Error Analysis (University Science Books, Mill Valley, 1982). 53) R. Schmidt, A. W. Brinkman, Adv. Funct. Mat., (to be published). 54) S. Zafar, R. E. Jones, B. Jiang, B. White, P. Chu, D. Taylor, S. Gillespie, Appl. Phys. Lett., 73, 175, 1998. 55) K. Nomura, S. Tanase, Solid State Ionics, 98, 229, 1997.
Collections