Publication:
Dynamical instability in kicked Bose-Einstein condensates

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Bose-Einstein condensates subject to short pulses (kicks) from standing waves of light represent a nonlinear analog of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (i.e., exponential proliferation of noncondensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the Bogoliubov spectrum for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.
Description
©2008 The American Physical Society. J.R. acknowledges funding from EPSRC-DHPA. The authors would like to thank Simon Gardiner, Mark Raizen, and Chuanwei Zhang for valuable advice. This research was supported by the EPSRC.
Keywords
Citation
[1] L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation Oxford University Press, Oxford, 2003; F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 1999. [2] D. L. Shepelyansky, Phys. Rev. Lett. 70, 1787 1993. [3] S. A. Gardiner, D. Jaksch, R. Dum, J. I. Cirac, and P. Zoller, Phys. Rev. A 62, 023612 2000; R. Artuso and L. Rebuzzini, Phys. Rev. E 68, 036221 2003. [4] Q. Thommen, J. C. Garreau, and V. Zehnle, Phys. Rev. Lett. 91, 210405 2003. [5] G.J. Duffy, A.S. Mellish, K.J. Challis, and A.C. Wilson, Phys. Rev. A 70, 041602 R 2004. [6] C. Zhang, J. Liu, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 92, 054101 2004. [7] J. Liu, C. Zhang, M.G. Raizen, and Q. Niu, Phys. Rev. A 73, 013601 2006. [8] S. Wimberger, R. Mannella, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 94, 130404 2005. [9] A. D. Martin, C. S. Adams, and S. A. Gardiner, Phys. Rev. Lett. 98, 020402 2007. [10] M. G. Raizen, Adv. At., Mol., Opt. Phys. 41, 43 1999. [11] M. K. Oberthaler, R. M. Godun, M. B. d’Arcy, G. S. Summy, and K. Burnett, Phys. Rev. Lett. 83, 4447 1999. [12] S. Fishman, I. Guarneri, and L. Rebuzzini, Phys. Rev. Lett. 89, 084101 2002; L. Rebuzzini, S. Wimberger, and R. Artuso, Phys. Rev. E 71, 036220 2005. [13] L. Rebuzzini, R. Artuso, S. Fishman, and I. Guarneri, Phys. Rev. A 76, 031603 R 2007. [14] C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 96, 160403 2006; M. Sadgrove, M. Horikoshi, T. Sekimura, and K. Nakagawa, ibid. 99, 043002 2007; G. Behinaein, V. Ramareddy, P. Ahmadi, and G. S. Summy, ibid. 97, 244101 2006; I. Dana, V. Ramareddy, I. Talukdar, and G. S. Summy, ibid. 100, 024103 2008; J. F. Kanem, S. Maneshi, M. Partlow, M. Spanner, and A. M. Steinberg, ibid. 98, 083004 2007. [15] B. Wu and Q. Niu, New J. Phys. 5, 104 2003. [16] M. Kramer, C. Tozzo, and F. Dalfovo, Phys. Rev. A 71, 061602 R 2005; C. Tozzo, M. Krämer, and F. Dalfovo, ibid. 72, 023613 2005. [17] D. Poletti, G. Benenti, G. Casati, and B. Li, Phys. Rev. A 76, 023421 2007. [18] J. J. Garcia-Ripoll, V. M. Perez-Garcia, and P. Torres, Phys. Rev. Lett. 83, 1715 1999; Yu. Kagan and L. A. Manakova, e-print arXiv:cond-mat/0609159. [19] N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, and S. Chu, Phys. Rev. Lett. 95, 170404 2005; G. Campbell, J. Mun, M. Boyd, E. Streed, W. Ketterle, and D. Pritchard, ibid. 96, 020406 2006; P. Engels C. Atherton, and M. A. Hoefer, ibid. 98, 095301 2007. [20] P. H. Jones, M. M. Stocklin, G. Hur, and T. S Monteiro, Phys. Rev. Lett. 93, 223002 2004; C. E. Creffield, G. Hur, and T. S. Monteiro, ibid. 96, 24103 2006; J. Wang, T. S. Monteiro, S. Fishman, J. P. Keating, and R. Schubert, ibid. 99, 234101 2007. [21] This means that we work with the effective value of the onedimensional nonlinearity constant g≡g_(1D) . [22] Y. Castin and R. Dum, Phys. Rev. Lett. 79, 355 1997; Y. Castin and R. Dum, 57, 3008 1998. [23] S.A.Gardiner and S.A.Morgan, Phys. Rev. A 75, 043621 2007. [24] While we cannot draw any conclusions on the kicked harmonic oscillator, as we do not study it, we note that, e.g., Figs. 18 and 19 in the study in Ref. [3] show deep slow oscillations suggestive of an approach to a Bogoliubov resonance (not necessarily leading to exponential behavior in those examples).
Collections