Publication:
Clustered array of ochratoxin A biosynthetic genes in Aspergillus steynii and their 1 expression patterns in permissive conditions

Research Projects
Organizational Units
Journal Issue
Abstract
Aspergillus steynii is probably the most relevant species of section Circumdati producing ochratoxin A (OTA). This mycotoxin contaminates a wide number of commodities and it is highly toxic for humans and animals. Little is known on the biosynthetic genes and their regulation in Aspergillus species. In this work, we identified and analysed three contiguous genes in A. steynii using 5′-RACE and genome walking approaches which predicted a cytochrome P450 monooxygenase (p450ste), a non-ribosomal peptide synthetase (nrpsste) and a polyketide synthase (pksste). These three genes were contiguous within a 20742 bp long genomic DNA fragment. Their corresponding cDNA were sequenced and their expression was analysed in three A. steynii strains using real time RT-PCR specific assays in permissive conditions in in vitro cultures. OTA was also analysed in these cultures. Comparative analyses of predicted genomic, cDNA and amino acid sequences were performed with sequences of similar gene functions. All the results obtained in these analyseswere consistent and point out the involvement of these three genes in OTA biosynthesis by A. steynii and showed a co-ordinated expression pattern. This is the first time that a clustered organization OTA biosynthetic genes has been reported in Aspergillus genus. The results also suggested that this situation might be common in Aspergillus OTA-producing species and distinct to the one described for Penicillium species.
Description
Keywords
Citation
Abbas, A., Coghlan, A., O'Callaghan, J., García-Estrada, C., Martín, J.F., & Dobson, A.D., 2013. Functional characterization of the polyketide synthase gene required for ochratoxin A biosynthesis in Penicillium verrucosum. Int. J. Food Microbiol. 161 (3), 171–181. Bacha, N., Atoui, A., Mathieu, F., Liboz, T., & Lebrihi, A., 2009. Aspergillus westerdijkiae polyketide synthase gene “aoks1” is involved in the biosynthesis of ochratoxin A.Fungal Genet. Biol. 46 (1), 77–84. Bragulat, M.R., Abarca, M.L., & Cabañes, F.J., 2001. An easy screening method for fungi producing ochratoxin A in pure culture. Int. J. Food Microbiol. 71 (2–3), 139–144. Challis, G.L., & Naismith, J.H., 2004. Structural aspects of non-ribosomal peptide biosynthesis. Curr. Opin.Struct. Biol. 14 (6), 748–756. Chiang, Y.M., Oakley, B.R., Keller, N.P., & Wang, C.C.C., 2010. Unravelling polyketide synthesis in members of the genus Aspergillus. Appl. Microbiol. Technol. 86 (6),1719–1736. Covarelli, L., Beccari, G.,Marini, A., & Tosi, L., 2012. A review on the occurrence and control of ochratoxigenic fungal species and ochratoxin A in dehydrated grapes,non-fortified dessert wines and dried vine fruit in the Mediterranean area. Food Control 26 (2), 347–356. Cox, R.J., & Simpson, T.J., 2009. Fungal type I olyketide synthases. In: Hopwood, D.A.(Ed.)Methods in Enzymology vol. 459. Academic Press, New York, pp. 49–98 (Chapter 3). Cresnar, B., & Petric, S., 2011. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta 1814 (1), 29–35. Dao, H.P., Mathieu, F., & Lebrihi, A., 2005. Two primer pairs to detect OTA producers by PCR method. Int. J. Food Microbiol. 104 (1), 61–67. Desjardins, A.E., & Proctor, R.H., 2007. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 119 (1–2), 47–50. Duarte, S.C., Pena, A., & Lino, C.M., 2009. Ochratoxin A non-conventional exposure sources — a review. Microchem. J. 93 (2), 115–120. Duarte, S.C., Lino, C.M., & Pena, A., 2010a. Mycotoxin food and feed regulation and the specific case of ochratoxin A: a review of the worldwide status. Food Addit. Contam. Part A: Chem. Anal. Control Expo. Risk Assess. 27 (10), 1440–1450. Duarte, S.C., Pena, A., & Lino, C.M., 2010b. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiol. 27 (2),187–198. Eisfield, K., 2009. Non-ribosomal peptide synthetases of fungi. In: Anke, T., Weber, D.(Eds.), The Mycota. Physiology & Genetics. Berlin, Springer, pp. 305–330. El Khoury, A., & Atoui, A., 2010. Ochratoxin A: general overview and actual molecular status. Toxins 2 (4), 461–493. European Commission, 2006. EC No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 364, 5–24. European Commission, 2010. EU No 105/2010 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off. J. Eur. Union 35, 7–8. Evans, B.S., Robinson, S.J., & Kelleher, N.L., 2011. Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet. Biol. 48 (1), 49–61. Frisvad, J.C., Frank, J.M., Houbraken, J.A.M.P.,Kuijpers, A.F.A., & Samson, R.A., 2004. New ochratoxin A producing species of Aspergillus section Circumdati. Stud. Mycol. 50,23–43. Gallo, A., Perrone, G., Solfrizzo, M., Epifani, F., Abbas, A., Dobson, A.D.W., & Mulè, G., 2009. Characterisation of a pks gene which is expressed during ochratoxin A production by Aspergillus carbonarius. Int. J. Food Microbiol. 129 (1), 313–318. Gallo, A., Bruno, K.S., Solfrizzo, M., Perrone, G., Mulè, G., Visconti, A., & Baker, S.E., 2012. New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Appl. Environ. Microbiol. 78 (23), 8208–8218. Gallo, A., Knox, B.P., Bruno, K.S., Solfrizzo,M., Baker, S.E., & Perrone, G., 2014. Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 179 (2), 10–17. Geisen, R., & Schmidt-Heydt, M., 2009. Physiological and molecular aspects of ochratoxin A biosynthesis. In: Anke, T., Weber, D. (Eds.), The MycotaPhysiology and Genetics — Selected Basic and Applied Aspects 15. Springer, Berlin, pp. 353–376. Geisen, R., Schmidt-Heydt, M., & Karolewiez, A., 2006. A gene cluster of the ochratoxin A biosynthetic genes in Penicillium. Mycotoxin Res. 22 (2), 134–141. Gil-Serna, J., Vázquez, C., Sardiñas, N., González-Jaén, M.T., & Patiño, B., 2009. Discrimination of the main ochratoxin A-producing species in Aspergillus section Circumdati by specific PCR assays. Int. J. Food Microbiol. 136 (1), 83–87. Gil-Serna, J., Vázquez, C., Sardiñas, N., González-Jaén, M.T., & Patiño, B., 2011. Revision of ochratoxin A production capacity by the main species of Aspergillus section Circumdati. Aspergillus steynii revealed as the main risk of OTA contamination. Food Control 22 (2), 343–345. González-Salgado, A., 2009. Diagnóstico y control de especies de Aspergillus productoras de ocratoxina A. (Doctoral Thesis). Huff, W.E., & Hamilton, P.B., 1979. Mycotoxins—their biosynthesis in fungi: ochratoxins—metabolites of combined pathways. J. Food Prot. 42 (10), 815–820. IARC, 1993. Ochratoxin A. Some naturally occurring substances: some food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 56, pp. 489–521. IUPAC, 1992. Ochratoxin A: a review. Pure Appl. Chem. 64 (7), 1029–1046.Karolewiez, A., & Geisen, R., 2005.Cloning a part of the ochratoxin A biosynthetic gene cluster of Penicillium nordicum. Syst. Appl. Microbiol. 28 (7), 588–595. Keller, N.P., Turner, G., & Bennett, J.W., 2005. Fungal secondary metabolism — from biochemistry to genomics. Nat. Rev. Microbiol. 3 (12), 937–947. Leong, S.L., Hien, L.T., An, N.T., Trang, N.T., Hocking, A.D., & Scott, E.S., 2007. Ochratoxin A-producing Aspergilli in Vietnamese green coffee beans. Lett. Appl. Microbiol. 45 (3), 301–306. Livak, K.J., & Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25 (4), 402–408. Mateo, E.M., Gil-Serna, J., Patiño, B., & Jiménez, M., 2011. Aflatoxins and ochratoxin A in stored barley grain in Spain and impact of PCR-based strategies to assess the occurrence of aflatoxigenic and ochratoxigenic Aspergillus spp. Int. J. Food Microbiol.149 (2), 118–126. Miller, M.J., & Linz, J.E., 2005. Genetic mechanisms involved in regulation of mycotoxin biosynthesis. In: Shetty, K., Paliyath, G., Pometto, A., Levin, R.E.(Eds.), Food Biotechnology,2nd edition CRC Press, Boca Raton, pp. 1505–1541. Noonim, P., Mahakarnchanakul, W., Nielsen, K.F., Frisvad, J.C., & Samson, R.A., 2008.Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand. Int. J. FoodMicrobiol. 128(2), 197–202. O'Callaghan, J., Caddick, M.X., & Dobson, A.D., 2003. A polyketide synthase gene required for ochratoxin A biosynthesis in Aspergillus ochraceus. Microbiology 149 (12),3485–3491. O'Callaghan, J., Stapleton, P.C., & Dobson, A.D., 2006. Ochratoxin A biosynthetic genes in Aspergillus ochraceus are differentially regulated by pH and nutritional stimuli. Fungal Genet. Biol. 43 (4), 213–221. Pel, H.J.,Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., Turner, G., de Vries, R.P., Albang, R., Albermann, K., Andersen, M.R., Bendtsen, J.D., Benen, J.A.E., van den Berg, M., Breestraat, S., Caddick, M.X., Contreras, R., Cornell, M., Coutinho, P.M., Danchin, E.G.J., Debets, A.J.M., Dekker, P., van Dijck, P.W.M., van Dijk, A., Dijkhuizen, L., Driessen, A.J.M., d'Enfert, C., Geysens, S., Goosen, C., Groot, G.S.P., de Groot, P.W.J.,Guillemette, T., Henrissat, B., Herweijer, M., van den Hombergh, J.P.T.W., van den Hondel, C.A.M.J.J., van der Heijden, R.T.J.M., van der Kaaij, R.M., Klis, F.M., Kools, H.J., Kubicek, C.P., van Kuyk, P.A., Lauber, J., Lu, X., van der Maarel, M.J.E.C., Meulenberg, R., Menke, H., Mortimer, M.A., Nielsen, J., Oliver, S.G., Olsthoorn, M., Pal, K., van Peij, N.N.M.E., Ram, A.F.J., Rinas, U., Roubos, J.A., Sagt, C.M.J., Schmoll, M., Sun, J., Ussery, D., Varga, J., Vervecken, W., van de Vondervoort, P.J.J., Wedler, H., Wösten, H.A.B., Zeng, A.P., van Ooyen, A.J.J., Visser, J., & Stam, H., 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25 (2), 221–231. Pitt, J.I., 2000. Toxigenic fungi: which are important? Med. Mycol. 38 (S1), 17–22. Proctor, R.H., McCormick, S.P., Alexander, N.J., & Desjardins, A.E., 2009. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol. Microbiol. 74 (5), 1128–1142. Querol, A., Barrio, E., Huerta, T., & Ramón, D., 1992. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 58 (9), 2948–2953. Schmidt-Heydt, M., Baxter, E., Geisen, R., & Magan, N., 2007. Physiological relationship between food preservatives, environmental factors, ochratoxin and otapksPV gene expression by Penicillium verrucosum. Int. J. Food Microbiol. 119 (3), 277–283. Schmittgen, T.D., & Livak, K.J., 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3 (6), 1101–1108. Seo, J., Proctor, R.H., & Plattner, R.D., 2001. Characterization of four clustered coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides. Fungal Genetics and Biology 34 (3), 155–165. Werck-Reichhart, D., & Feyereisen, R., 2000. Cytochromes P450: a success story. Genome Biol. 1 (6), 3003.1–3003.9. Yu, J., Chang, P.K., Ehrlich, K.C., Cary, J.W.,Bhatnagar, D., Cleveland, T.E., Payne, G.A., Linz,J.E.,Woloshuk, C.P., & Bennett, J.W., 2004. Clustered pathway genes in aflatoxinbiosynthesis. Appl. Environ. Microbiol. 70 (3), 1253–1262.
Collections