Publication:
Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces

Research Projects
Organizational Units
Journal Issue
Abstract
In systems with strong electron-lattice coupling, such as manganites, orbital degeneracy is lifted, causing a null expectation value of the orbital magnetic moment. Magnetic structure is thus determined by spin–spin superexchange. In titanates, however, with much smaller Jahn–Teller distortions, orbital degeneracy might allow non-zero values of the orbital magnetic moment, and novel forms of ferromagnetic superexchange interaction unique to t_2g electron systems have been theoretically predicted, although their experimental observation has remained elusive. In this paper, we report a new kind of Ti^3+ ferromagnetism at LaMnO_3/SrTiO_3 epitaxial interfaces. It results from charge transfer to the empty conduction band of the titanate and has spin and orbital contributions evidencing the role of orbital degeneracy. The possibility of tuning magnetic alignment (ferromagnetic or antiferromagnetic) of Ti and Mn moments by structural parameters is demonstrated. This result will provide important clues for understanding the effects of orbital degeneracy in superexchange coupling.
Description
© 2010 Macmillan Publishers Limited. We thank Andrew Millis and Giniyat Khaliullin for stimulating discussions. J.G.-B. thanks the Spanish Ministry of Science and Innovation (MICINN) for financial support through the Specialization in International Organizations fellowship. This work was supported by Spanish MICINN Grant MAT 2008 06517, Consolider Ingenio CSD2009-00013 (IMAGINE), CAM S2009-MAT 1756 (PHAMA). Work at ORNL was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Some XMCD experiments were conducted with the approval of JASRI (proposal no. 2007B1516) and supported by UK EPSRC Grants EP/F062729 and EP/G056463/1.
UCM subjects
Unesco subjects
Keywords
Citation
1. Dagotto, E. & Tokura, Y. Strongly correlated electronic materials: present and future. MRS Bull. 33, 1037–1045 (2008). 2. Imada, M., Fujimori, M. & Tokura, Y. Metal-Insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998). 3. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000). 4. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005). 5. Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. B 100, 564–573 (1955). 6. Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959). 7. Ulrich, C. et al. Momentum Dependence of Orbital Excitations in Mott-Insulating Titanates. Phys. Rev. Lett. 103, 107205 (2009). 8. Keimer, B. et al. Spin dynamics and orbital state in LaTiO3. Phys. Rev. Lett. 85, 3946–3949 (2000). 9. Khaliullin, B. & Maekawa, S. Orbital liquid in three-dimensional mott insulator: LaTiO3. Phys. Rev. Lett. 85, 3950–3953 (2000). 10. Haverkort, M. W. et al. Determination of the orbital moment and crystal-field splitting in LaTiO3. Phys. Rev. Lett. 94, 056401 (2005). 11. Mizokawa, T. & Fujimori, A. Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations. Phys. Rev. B 54, 5368–5380 (1996). 12. Mizokawa, T., Khomskii, D. I. & Sawatzky, G. Interplay between orbital ordering and lattice distortions in LaMnO3, YVO3, and YTiO3. Phys. Rev. B 60, 7309–7313 (1999). 13. Okamoto, S. & Millis, A. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004). 14. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002). 15. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004). 16. Thiel, S., Hammer, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006). 17. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008). 18. Bhattacharya, A. et al. Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. Lett. 100, 257203 (2008). 19. Caviglia, A. D., Gabay, M., Gariglio, S., Reyren, N., Cancellieri, C. & Triscone, J. M. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010). 20. Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010). 21. Tebano, A. et al. Evidence of orbital reconstruction at interfaces in ultrathin La0.67Sr0.33MnO3 films. Phys. Rev. Lett. 100, 137401 (2008). 22. Yunoki, S., Moreo, A., Dagotto, E., Okamoto, S., Kancharla, S. S. & Fujimori, A. Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 76, 064532 (2007). 23. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phy. 2, 244–248 (2006). 24. Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007). 25. Garcia-Barriocanal, J. et al. ‘Charge leakage’ at LaMnO3/SrTiO3 interfaces. Adv. Mat. 22, 627–632 (2010). 26. Abbate, J. et al. Soft-X-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. Phys. Rev. B 44, 5419–5422 (1991). 27. Aruta, C. et al. Preparation and characterization of LaMnO3 thin films grown by pulsed laser deposition. J. Appl. Phys. 100, 023910 (2006). 28. Maekawa, S. in Physics of transition metal oxides chap. 1. Ed Springer (2004). 29. Aruta, C. et al. Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices. Phys. Rev. B 80, 140405(R) (2009). 30. Okamoto, S. Magnetic interaction at an interface between manganite and other transition-metal oxides. Phys. Rev. B 82, 024427 (2010). 31. Chen, C. T. et al. Experimental confirmation of the X-ray magnetic circular Dichroism Sum Rules for Iron and Cobalt. Phys. Rev. Lett. 75, 152 (1995).
Collections