Publication:
Thickness Dependent Magnetic Anisotropy of Ultrathin LCMO Epitaxial Thin Films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-11
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE-Institute of Electrical and Electronics Engineers
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The magnetic properties of La_0.7Ca_0.3Mn_O3 (LCMO) manganite thin films were studied with magnetometry and ferromagnetic resonance as a function of film thickness. They maintain the colossal magnetoresistance behavior with a pronounced metal-insulator transition around 150-200 K, except for the very thinnest films studied (3 nm). Nevertheless, LCMO films as thin as 3 nm remain ferromagnetic, without a decrease in saturation magnetization, indicating an absence of dead-layers, although below approximately 6 nm the films remain insulating at low temperature. Magnetization hysteresis loops reveal that the magnetic easy axes lie in the plane of the film for thicknesses in the range of 4-15 nm. Ferromagnetic resonance studies confirm that the easy axes are in-plane, and find a biaxial symmetry in-plane with two, perpendicular easy axes. The directions of the easy axes with respect to the crystallographic directions of the cubic SrTiO_3 substrate differ by 45 deg in 4- and 15-nm-thick LCMO films.
Description
©2009 IEEE-Institute of Electrical and Electronics Engineers. N. N. M. acknowledges the “Ramon y Cajal” fellowship of the Spanish Ministry of Science and Education. This work was supported in part by SPIN-MAT06024 C01 and C02 and by Marie-Curie-IRG grant No. 024861, and by OTKA PF63954, K68807 and NK60984.
Unesco subjects
Keywords
Citation
[1] Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. Leon, J. L. Martinez, J. Santamaría, Phys. Rev. B 67, 214511 (2003) [2] J. Chakhalian, J. W. Freeland, G. Srajer, J. Strempfer, G. Khaliullin, J. C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, Nat. Phys. 2, 244 (2006). [3] V. Peña, C. Leon, Z. Sefrioui, J. Santamaría, J. L. Martinez, S. G. E. te Velthuis and A. Hoffmann Phys. Rev. Lett. 94, 057002 (2005) [4] C. Visani, V. Peña, J. Garcia-Barriocanal, D. Arias, Z. Sefrioui, C. Leon, J. Santamaría, N. M. Nemes, M. Garcia-Hernandez, J. L. Martinez, S. G. E. te Velthuis and A. Hoffman Phys. Rev. B 75, 054501 (2007) [5] A. Singh, C. Surgers, and H. von Lohneysen, Phys. Rev. B 75, 024513 (2007). [6] J. Aarts and A. Y. Rusanov, C. R. Physique 7, 99 (2006). [7] D. Stamopoulos, E. Manios, and M. Pissas, Phys. Rev. B 75, 014501 (2007). [8] I. C. Moraru, W. P. Pratt, and N. O. Birge, Phys. Rev. Lett. 96, 037004 (2006). [9] R. Steiner and P. Ziemann, Phys. Rev. B 74, 094504 (2006). [10] Z. H. Wang, G. Cristiani, and H. U. Habermeier, Appl. Phys. Lett. 82, 3731 (2003). [11] M. Mathews, F. M. Postma, J. C. Lodder, R. Jansen, G. Rijnders and D. H. A. Blank Appl. Pys. Lett. 87, 242507 (2005) [12] T. Taniuchi, H. Kumigashira, M. Oshima, T. Wakita, T. Yokoya, M. Kubota, K. Ono, H. Akinaga, M. Lippmaa, M. Kawasaki, et al., Appl. Phys. Lett. 89, 112505 (2006). [13] I. C. Infante, J. O. Osso, F. Sanchez, and J. Fontcuberta, Appl. Phys. Lett. 92, 012508 (2008). [14] Z. Sefrioui, D. Arias, M. Varela, J. E. Villegas, M. A. L. de la Torre, C. Leon, G. D. Loos, and J. Santamaría, Phys. Rev. B 60, 15423 (1999) [15] Z. Sefrioui, M. Varela, V. Peña, D. Arias, C. Leon, J. Santamaria, J. E. Villegas, J. L. Martinez, W. Saldarriaga, and P. Prieto, Appl. Phys. Lett. 81, 4568 (2002) [16] V. Peña, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, M. Varela, S. J. Pennycook, and J. L. Martinez, Phys. Rev. B 69, 224502 (2004) [17] I. K. Schuller, Phys. Rev. Lett. 44, 1597 (1980); W. Sevenhans, M. Gijs, Y. Bruynseraede, H. Homma, and I. K. Schuller, Phys. Rev. B 34, 5955 (1986); E. E. Fullerton, I. K. Schuller, H. Vanderstraeten, and Y. Bruynseraede, ibid. 45, 9292 (1992); D. M. Kelly, E. E. Fullerton, J. Santamaria, and I. K. Schuller, Scr. Metall. Mater. 33, 1603 (1995).
Collections