Publication:
Meyer Neldel rule application to silicon supersaturated with transition metals

Research Projects
Organizational Units
Journal Issue
Abstract
This paper presents the results for the transverse conductance across a bilayer formed by supersaturating with diverse transition metals a thin layer of a silicon wafer. The layer is formed by ion implantation and annealed by pulsed laser melting. The transverse conductance is exponentially activated, obtaining values ranging from 0.018 to 0.7 eV for the activation energy and pre-exponential factors of 10^-2-10^12 S depending on the annealing energy density. A semi-logarithmic plot of the pre-exponential factor versus activation energy shows an almost perfect linear behavior as stated by the Meyer Neldel rule. The Meyer Neldel energy obtained for implantation with different transition metals and also annealed in different conditions is 22meV, which is within the range of silicon phonons, thus confirming the hypothesis of the Multi Excitation Entropy theory.
Description
©2015 IOP Publishing Ltd. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations and to the Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements. This work was partially supported by the Project MADRID-PV (Grant No. P2013/MAE-2780) funded by the Comunidad de Madrid and by the Spanish MINECO (Economic and Competitiviness Ministery) under grant TEC 2013-41730-R Research by E. García-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea thank Professor A. Martí and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI- 2011-10402 and JCI-2011-11471), under which this research was undertaken. D. Pastor acknowledges the financial support to the grant EX-2010-0662 from the Spanish Science Ministry.
Unesco subjects
Keywords
Citation
[1] A. Luque and A. Marti. Phys. Rev. Lett. 78, 5014 (1997) [2] N. F. Mott, Rev. Mod. Phys. 40, 677 (1968) [3] A. Martí, E. Antolín, E. Cánovas, N. López, P.G. Linaes, A. Luque, C. Stanley and C. Farmer. Thin Solid Films 516, 6716 (2008) [4] N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz. Phys. Rev. Lett. 106, 028701 (2011) [5] S. Silvestre, A. Boronat, M. Colina, L. Castañer, J. Olea, D. Pastor, A. del Prado, I. Mártil, G. González-Díaz, A. Luque, E. Antolín, E. Hernández, I. Ramiro, I. Artacho, E. López and A. Martí. Jap. J. Appl. Phys. 52, 122302 (2013) [6] J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, and T. Buonassisi, , J. Appl. Phys. 114, 103701 (2013) [7] E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil and G. Gónzalez-Díaz Appl. Phys. Lett. 103, 032101 (2013) [8] J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz and T. Buonassisi, Nature Comm. 5, 3011 (2014) [9] W. Meyer and H. Neldel, Phys. Zeitsch. 38, 1014 (1937) [10] T. J. Coutts and N. M. Pearsall. Appl. Phys. Lett. 44, 134 (1984) [11] R. Widenhorn, M. Fitzgibbons, and E. Bodegom. J. Appl. Phys. 96, 7379 (2004) [12] Y. F. Chen and S. F. Huang Phys. Rev. B 44, 13775 (1991) [13] A. Yelon, B. Movaghar and R. S. Crandall Rep. Prog. Phys. 69, 1145 (2006) [14] A. Yelon, B. Movaghar and H. M. Branz, Phys. Rev. B 46, 12244 (1992) [15] A. Yelon, Monatsh. Chem. 144, 91 (2013) [16] J. Olea, D. Pastor, A. del Prado, I. Mártil and G. González-Díaz. J. Phys. D: Appl. Phys. 46, 135108 (2013) [17] Luque A, Martí A, Antolín E, Tablero C Physica B 382 (2006) 320–327 [18] D. Pastor, J. Olea, A. del Prado, E. García-Hemme, R. García-Hernansanz and G. González-Díaz. Sol. Ener. Mat. And Solar Cells. 104, 159 (2012) [19] J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque. J. Appl. Phys. 109, 063718 (2011) [20] J. Olea, D. Pastor, M. Toledano, I. Mártil and G. González-Díaz. Springer Series in Optical Sciences 165, 321 (2012) (A. B. Cristóbal, A. Martí, A. Luque, Editors) Springer, Heidelberg [21] J. Olea, D. Pastor, A. del Prado, E. García-Hemme, I. Mártil and G. González Díaz. Thin Solid Films 520, 6614 (2012) [22] J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil and G. González-Díaz. J. Appl. Phys. 107, 103524 (2010) [23] J. Mathews, A. J. Akey, D. Recht, G. Malladi, H. Efstathiadis, Michael J. Aziz and Jeffrey M. Warrender. Appl. Phys. Lett. 104, 112102 (2014) [24] D. Pastor, J. Olea, E. García-Hemme, I. Mártil, G. González Díaz, J. Ibáñez, R. Cuscó and L. Artús, Semicond. Sci. Technol 26, 115003 (2011) [25] D. Pastor, J. Olea, I. Mártil, G. González-Díaz, A. Muñoz Martín and A. Climent Font. J. Appl. Phys. 112, 113514 (2012) [26] Sharma, S. K.; Sagar, P.; Gupta, Himanshu, Rajendra Kumar and R.M. Mehra Sol. State. Electron. 51, 1124 (2007) [27] L. Pichon, A. Mercha, J.M. Routoure, R. Carin, O. Bonnaud, T. Mohammed-Brahim. Thin Solid Films 427, 350 (2003) [28] S. Witanachchi, H. Abou Mourad, and P. Mukherjee J. Appl. Phys. 99, 073710 (2006) [29] R. Widenhorn, L. Mündermann, A. Rest, and E. Bodegom J. Appl. Phys. 89, 8179 (2001) [30] Godet C (1994) Philos. Mag. B 70:1003
Collections