Publication:
Strategies to unblock the n-GaAs surface when electrodepositing Bi from acidic solutions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-08-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-Elsevier Science Ltd.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Bismuth ultra-thin films grown on n-GaAs electrodes via electrodeposition are porous due to a blockade of the electrode surface caused by adsorbed hydrogen when using acidic electrolytes. In this study, we discuss the existence of two sources of hydrogen adsorption and e propose different routes to unblock the n-GaAs surface in order to improve Bi films compactness. Firstly, we demonstrate that increasing the electrolyte temperature provides ompact yet polycrystalline Bi films. Cyclic voltammetry scans indicate that this low crystal quality might be a result of the incorporation ofBi hydroxides within the Bi film as a result of the temperature increase. Secondly, we have illuminated the semiconductor surface to take advantage of photogenerated holes. These photocarriers oxidize the adsorbed hydrogen nblocking the surface, but also create pits at the substrate surface that degrade the Bi/GaAs interface and prevent an epitaxial growth. Finally, we show that performing a cyclic voltammetry scan before electrodeposition enables the growth of compact Bi ultra-thin films of high crystallinity on semiconductor substrates with a doping level low enough to perform transport measurements.
Description
©Pergamon-Elsevier Science Ltd.. We acknowledge partial financial support of this work by Spanish Ministerio de Economía y Competitividad (project MAT2011-28751-C02). Alicia Prados acknowledges financial support from Ministerio de Educación of Spain (FPU program) and acknowledges the useful discussions on this work with Dr. Ángela Llavona.
Keywords
Citation
[1] E. I. Rogacheva, S. G. Lyubchenko, O. N. Nashchekina, A. V. Meriuts, M. S. Dresselhaus, Quantum size effects and transport phenomena in thin Bi layers, Microelectron. J. 40 (2009 728. DOI: 10.1016/j.mejo.2008.11.007 [2] C. Sabater, D. Gosálbez-Martínez, J. Fernández-Rossier, J. G. Rodrigo, C. Untiedt, J. J. alacios, Topologically protected quantum transport in locally exfoliated bismuth at room emperature. Phys. Rev. B 110 (2013) 176802. DOI: 10.1103/PhysRevLett.110.176802 [3] S. Sangiao, J. M. Michalik, L. Casado, M. C. Martínez-Velarte, L. Morellón, M. R. Ibarra, J. M. De Teresa, Conductance steps in electromigrated Bi nanoconstrictions, Phys. Chem. Chem. Phys. 15 (2013) 5132. DOI: 10.1039/c3cp44133d [4] M. C. Cottin, C. A. Bobisch, J. Schaffert, G. Jnawali, G. Bihlmayer, R. Möller, Interplay between forward and backward scattering of spin-orbit split surface states of Bi(111), Nano Lett. 13 (2013) 2717. DOI: 10.1021/nl400878r [5] M. Wada, S. Murakami, F. Freimuth, G. Bihlmayer, Localized edge states in twodimensional opological insulators: ultrathin Bi films, Phys. Rev. B 83 (2011) 121310(R). DOI: 10.1103/PhysRevB.83.121310 [6] I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H. Ji, R. J. Cava, B. A. Bernevig, A. Yazdani, One-dimensional topological edge states of bismuth bilayers, Nat. Phys. 10 (2014) 664. DOI:10.1038/NPHYS3048 [7] F. Yang, L. Miao, Z. F. Wang, M. -Y. Yao, F. Zhu, Y. R. Song, M. -X. Wang, J. -P. Xu, A. V. edorov, Z. Sun, G. B. Zhang, C. Liu, F. Liu, D. Qian, C. L. Gao, , J. -F. Jia, Spatial and energy istribution of topological edge states in single Bi(111) bilayer, Phys. Rev. Lett. 109 (2012 016801. DOI:10.1103/Phys.Rev.Lett.109.016801. [8] Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Bluegel, P. M. Echenique, Ph. Hofmann, Strong spin-orbit splitting on Bi surfaces, Phys. Rev. Lett. 93 (2004) 046403. DOI:10.1103/PhysRevLett.93.046403 [9] T. Hirahara, K. Miyamoto, A. Kimura, Y. Niinuma, G. Bihlmayer, E. V. Chulkov, T. Nagao, I. Matsuda, S. Qiao, K. Shimada, H. Namatame, M. Taniguchi, S. Hasegawa, Origin of the surface- tate band-splitting in ultrathin Bi films: from a Rashba effect to a parity effect, New J. Phys. 10 (2008) 083038. DOI:10.1088/1367-2630/10/8/083038 [10] A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. rollier, A. Fert, Matching domain-wall configuration and spin-orbit torques for efficient omain- wall motion, Phys. Rev. B 87 (2013) 020402(R). DOI: 10.1103/PhysRevB.87.020402 [11] J. C. Rojas Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attanée, J. M. D. Teresa, C. agén, A. Fert, Spin-to-charge conversion using Rashba coupling at the interface between nonmagnetic materials, Nat. Commun. 4 (2013) 2944. DOI: 10.1038/ncomms3944. [12] T. W. Cornelius, M. E. Toimil-Molares, S. Karim, R. Neumann, Oscillations of electrical conductivity in single bismuth nanowires, Phys. Rev. B 77 (2008) 125425. DOI: 10.1103/PhysRevB.77.125425. [13] N. Marcano, S. Sangiao, M. Plaza, L. Pérez, A. Fernández Pacheco, R. Córdoba, M. C. Sánchez, L. Morellón, M. R. Ibarra, J. M. De Teresa, Weak-antilocalization signatures in the magnetotransport properties of individual electrodeposited Bi nanowires, Appl. Phys. Lett. 96 (2010) 082110. DOI: 10.1063/1.3328101. [14] P. M. Vereecken, K. Rodbell, C. Ji, P. C. Searson, Electrodeposition of bismuth thin films on n-GaAs(110), Appl. Phys. Lett. 86 (2005) 121916. DOI: 10.1063/1.1886248. [15] Z. L. Bao, K. L. Kavanagh, Epitaxial Bi/GaAs(111) diodes via electrodeposition, Appl. Phys. Lett. 88 (2006) 022102. DOI: 10.1063/1.2161849 [16] P. M. Vereecken, P. C. Searson, Electrochemical formation of GaAs/Bi Schottky barriers, Appl. Phys. Lett. 75 (1999) 3135. DOI: 10.1063/1.125255 [17] A. Prados, R. Ranchal, L. Pérez, Blocking effect in the electrodeposition of Bi on n-GaAs in acidic electrolytes, Electrochim. Acta 143 (2014) 23. DOI: 10.1016/j.electacta.2014.07.137 [18] J. O. Bockris, S. U. M. Khan, Surface electrochemistry. A molecular level approach, Springer Science + Business Media, New York, 1993. DOI: 10.1007/978-1-4615-3040-4 [19] A. De Vrieze, K. Strubbe, W. P. Gomes, S. Forment, R. L. Van Meirhaeghe, Electrochemical formation and properties of n-GaAs/Au and n-GaAs/Ag Schottky barriers: Influence of surface composition upon the barrier height, Phys. Chem. Chem. Phys. 3 (2001) 5297. DOI: 10.1039/b104887m [20] G. Oskam, D. Vanmaekelbergh, J. J. Kelly, The influence of electrodeposited gold on the properties of III-V semiconductor electrodes – part 1. Results of current-potential measurements on p-GaAs, Electrochim. Acta 38 (1993) 291. DOI: 10.1016/0013- 4686(93)85142-L [21] A. Holleman, E. Wiberg, N. Wiberg, Holleman-Wieberg: Inorganic Chemistry, Academic Press, London, 2001. [22] Z. Borkowska, U. Slimming, Perchlorate adsorption on polycrystalline gold electrodes in aqueous perchloric acid, J. Electroanal. Chem. 312 (1991) 237. DOI: 10.1016/0022- 0728(91)85156-J [23] O. Koga, Y. Watanabe, M. Tanizaki, Y. Hori, Specific adsorption of anions on a copper (100) single crystal electrode studied by charge desplacement by CO adsorption and infrared spectroscopy. Electrochim. Acta 46 (2001) 3083. DOI: 10.1016/S0013-4686(01)00599-0. [24] P. M. Vereecken, L. Sun, P. C. Searson, M. Tanase, D. H. Reich, C. L. Chien, Magnetotransport properties of bismuth films on p-GaAs, J. Appl. Phys. 88 (2000) 6529. DOI: 10.1063/1.1323537 [25] B. Lovrecek, I. Mekjavic, M. Metikos-Hukovic, Bismuth, in: A. J. Bard, R. Parsons y J. Jordan (Eds.), Standard Potentials in Aqueous Solutions, New York: International Union of Pure and Applied Chemistry, 1985. p. 180. [26] A. Olin, Studies on the Hydrolysis of Metal Ions. 19. The hydrolysis of bismuth(III) in perchlorate medium, Acta Chem. Scand. 11 (1957) 1445. DOI: 10.3891/acta.chem.scand.11- 1445 [27] B. H. Erné, F. Ozanam, J. -N. Chazalviel, The mechanism of hydrogen gas evolution on GaAs cathodes elucidated by in situ infrared spectroscopy, J. Phys. Chem. B 103 (1999) 2948. DOI: 10.1021/jp984765t. [28] W. J. Pielth, G. Pfuhl, A. Felske, W. Badawy, Photoetching of III/V semiconductors, Electrochim. Acta 34 (1989) 1133. DOI: 10.1016/0013-4686(89)87146-4 [29] W. P. Gomes, H. H. Goossens, Electrochemistry of III-V compound semiconductors: dissolution kinetics and etching, in: H. Gerischer, C. W. Tobias (Eds.), Advances in Electrochemical Science and Engineering, Vol. 3, VCH Verlagsgesellschaft mbH, Weinheim, 1994, p. 5. DOI: 10.1002/maco.19950460317 [30] H. Gerischer, Electrochemical behaviour of semiconductors under illumination, J. Electrochem. Soc. 113 (1966) 1174. DOI:10.1149/1.2423779 [31] J. Li, L. M. Peter, Surface recombination at semiconductor electrodes. Part IV. Steady-state and intensity modulated photocurrents at n-GaAs electrodes, J. Electroanal. Chem. 199 (1986) 1. DOI: 10.1016/0022-0728(86)87038-3. [32] Y. Huang, J. Luo, D. G. Ivey, Comparative study of GaAs corrosion in H2SO4 and NH3H2O solutions by electrochemical methods and surface analysis, Mat. Chem. Phys. 93 (2005) 429. DOI: 10.1016/j.matchemphys.2005.03.049 [33] R. Memming, Semiconductor Electrochemistry, Wiley-VCH Verlag GmbH, Weinheim 2001. DOI: 10.1002/9783527613069 [34] B. H. Erné, F. Ozanam, J.-N. Chazalviel, Dynamics of Hydrogen Adsorption on GaAs Electrodes, Phys. Rev. Lett. 80 (1998) 4337. DOI: 10.1103/PhysRevLett.80.4337 [35] B. H. Erné, M. Stchakovsky, F. Ozanam, J.-N. Chazalviel, Surface Composition of n-GaAs Cathodes during Hydrogen Evolution Characterized by In Situ Ultraviolet-Visible Ellipsometry nd In Situ Infrared Spectroscopy, J. Electrochem. Soc. 145 (1998) 447. DOI: 10.1149/1.1838283 [36] J. M. Woodall, P. Oelhafen, T. N. Jackson, J. L. Freeouf, G. D. Pettit, Photoelectrochemical passivation of GaAs surfaces, J. Vac. Sci. Technol. B 1 (1983) 795. DOI: 10.1116/1.582680. [37] M.S. Antelman, F. J. Harris Jr., The Encyclopedia of Chemical Electrode Potentials, Plenum Press, New York, 1982, p.98. DOl: 10.1007/978-1-4613-3374-6 [38] T. Mitsunaga, X-ray thin-film measurement techniques. II Out-of-plane diffraction measurements, The Rigaku J. 25 (2009) 7. [39] H. Gerischer, W. Mindt, The mechanism of the decomposition of semiconductors by electrochemical oxidation and reduction, Electrochim. Acta 13 (1968)1329. DOI: 10.1016/0013- 4686(68)80060-X [40] H. Lüth, Surface and Interfaces of Solid Materials, Springer-Verlag, Berlin, 1995. DOI: 10.1002/crat.2170310203
Collections