Publication:
Localization-delocalization transition in a system of quantum kicked rotors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-01-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The quantum dynamics of atoms subjected to pairs of closely spaced delta kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the single delta-kick system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L similar to h(-0.75) and obtain a regime of near-linear spectral variances which approximate the "critical statistics" relation Sigma(2)(L)similar or equal to chi L approximate to 1/2(1-nu)L, where nu approximate to 0.75 is related to the fractal classical phase-space structure. The origin of the nu approximate to 0.75 exponent is analyzed.
Description
©2006 The American Physical Society. This work was supported by the EPSRC. We thank Shmuel Fishman and Antonio Garcia-Garcia for helpful comments and advice.
Keywords
Citation
[1] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995). [2] G. Casati, B. V. Chirikov, F. M. Izraelev, and J. Ford, in Lecture Notes in Physics (Springer, Berlin, 1979), Vol. 93, p. 334; S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982). [3] P. H. Jones, M. M. Stocklin, G. Hur, and T. S. Monteiro, Phys. Rev. Lett. 93, 223002 (2004). [4] C. E. Creffield, S. Fishman, and T. S. Monteiro, physics/ 0510161. [5] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. A 36, 289 (1987). [6] N. T. Maitra and E. J. Heller, Phys. Rev. E 61, 3620 (2000). [7] B. I. Shklovskii et al., Phys. Rev. B 47, 11 487 (1993). [8] J. T. Chalker, I. V. Lerner, and R. A. Smith, Phys. Rev. Lett. 77, 554 (1996); V. E. Kravtsov and K. A. Muttalib, Phys. Rev. Lett. 79, 1913 (1997); D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev. Lett. 81, 1062 (1998); F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000). [9] E. B. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 59, R1315 (1999); A. M. Garcia-Garcia and J. J. M. Verbaarschot, Phys. Rev. E 67, 046104 (2003); E. Bogomolny and C. Schmit, Phys. Rev. Lett. 92, 244102 (2004); A. M. Garcia-Garcia and J. Wang, Phys. Rev. Lett. 94, 244102 (2005). [10] R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev. Lett. 69, 695 (1992). [11] M. Feingold et al., Phys. Rev. B 31, R6852 (1985); F. M. Izraelev, Phys. Rep. 196, 299 (1990). [12] M. Stocklin, Ph.D. thesis, University College London (to be published). [13] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 1993). [14] K. Vant, G. Ball, H. Ammann, and N. Christensen, Phys. Rev. E 59, 2846 (1999). [15] T. Geisel, G. Radons, and J. Rubner, Phys. Rev. Lett. 57, 2883 (1986). [16] C. Mejia-Monasterio, G. Benenti, G. G. Carlo, and G. Casati, Phys. Rev. A 71, 062324 (2005). [17] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993).
Collections