Publication:
Electron dynamics in AC-driven quantum dots

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer-Verlag Berlin
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A quantum dot (QD) is a structure in which electrons can be confined to small length scales, comparable to their Fermi wavelength. A set of electrons held in such a structure is conceptually similar to a set of atomic electrons bound to a nucleus, and for this reason quantum dots are sometimes termed “artificial atoms” [1]. Unlike real atoms, the physical properties of quantum dots can be easily varied, which gives theorists and experimentalists the opportunity to study novel quantum effects in a well-controlled system.
Description
ISSN: 0075-8450 International WE Heraeus Seminar on Localization, Quantum Coherence and Interactions (283rd. 2002. Hamburg, Germany). This work was supported by the Spanish DGES grant MAT2002-02465, by the European Union TMR contract FMRX-CT98-0180 and by the European Community’s Human Potential Programme under contract HPRN-CT-2000-00144, Nanoscale Dynamics.
Keywords
Citation
1. C.E. Creffield and G. Platero, Phys. Rev. B 65, 113304 (2002). 2. M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). 3. C.E. Creffield and G. Platero, Phys. Rev. B 66, 2353XX (2002). 4. M.A. Kastner, Phys. Today 46, 24 (1993); R.C. Ashoori, Nature (London) 379, 413 (1996). 5. R.H. Blick, D. Pfannkuche, R.J. Haug, K. von Klitzing and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998). 6. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha and L.P. Kouwenhoven, Nature (London) 395, 873 (1998). 7. P.W. Anderson, Phys. Rev. 109, 1492 (1958). 8. F. Grossmann, T. Dittrich, P. Jung and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). 9. J.H. Shirley, Phys. Rev. 138, B979 (1965). 10. M. Holthaus, Z. Phys. B 89, 251 (1992). 11. F. Grossmann and P. Hänggi, Europhys. Lett. 18, 571 (1992). 12. K. Jauregui, W. Häusler and B. Kramer, Erophys. Lett. 24, 581 (1993). 13. B.E. Cole, J.B. Williams, B.T. King, M.S. Sherwin and C.R. Stanley, Nature (London) 410, 60 (2001); D. Vion, A. Aasime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and M.H. Devoret, Science 296, 886 (2002). 14. P.I. Tamborenea and H. Metiu, Phys. Rev. Lett. 83, 3912 (1999). 15. C.H. Bennett and D.P. DiVincenzo, Nature (London) 404, 247 (2000). 16. J.H. Jefferson and W. Häusler, Phys. Rev. B 54, 4936 (1996). 17. J. von Neumann and E.P. Wigner, Phys. Z 30, 467 (1929). 18. H. Sambe, Phys. Rev. A 7, 2203 (1973). 19. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama and S. Tarucha, Phys. Rev. Lett. 88, 236802 (2002). 20. P. Zhang and X.-G. Zhao, Phys. Lett. A 271, 419 (2000). 21. E.P. Wigner, Phys. Rev. 46, 1002 (1934). 22. B. Tanatar and D.M. Ceperley, Phys. Rev. B 39, 5005 (1989). 23. S. Akbar and I.-H. Lee, Phys. Rev. B 63, 165301 (2001). 24. P.A. Schulz, P.H. Rivera, and N. Studart, Phys. Rev. B 66, 195310 (2002). 25. C.E. Creffield, W. Häusler, J.H. Jefferson and S. Sarkar, Phys. Rev. B 59, 10719 (1999). 26. C.E. Creffield, J.H. Jefferson, S. Sarkar and D.L.J. Tipton, Phys. Rev. B 62, 7249 (2000). 27. W. Häusler, Physica B 222, 43 (1996). 28. M. Koskinen, M. Manninen, B. Mottelson and S.M. Reimann, Phys. Rev. B 63, 205323 (2001). 29. D.G. Austing, T. Honda and S. Tarucha, Semicond. Sci. Technol. 12, 631 (1997). 30. J.T. Stockburger, Phys. Rev. E 59, R4709 (1999). 31. C.A. Stafford and S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994); R. Kotlyar and S. Das Sarma, Phys. Rev. B 55, R10205, (1997).