Publication:
Magnetic field dependence of the low-energy spectrum of a two-electron quantum dot

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-09-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The low-energy eigenstates of two interacting electrons in a square quantum dot in a magnetic field are determined by numerical diagonalization. In the strong correlation regime, the low-energy eigenstates show Aharonov-Bohm-type oscillations, which decrease in amplitude as the field increases. These oscillations, including the decrease in amplitude, may be reproduced to good accuracy by an extended Hubbard model in a basis of localized one-electron Hartree states. The hopping matrix element t comprises the usual kinetic energy term plus a term derived from the Coulomb interaction. The latter is essential to get good agreement with exact results. The phase of t gives rise to the usual Peierls factor, related to the flux through a square defined by the peaks of the Hartree wave functions. The magnitude of t decreases slowly with magnetic field as the Hartree functions become more localized, giving rise to the decreasing amplitude of the Aharonov-Bohm oscillations.
Description
© 2000 The American Physical Society. The authors would like to thank Wolfgang Häusler and Colin Lambert for stimulating discussions. C.E.C. acknowledges support from the Leverhulme Foundation and from the EV within the TMR programme. Support from the U.K. Ministry of Defense and the E.U. TMR program is also acknowledged.
Keywords
Citation
1. Daniel Loss and Eugene V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000). 2. M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992); F. M. Peeters and V. A. Schweigert, ibid. 53, 1468 (1996). 3. P. A. Maksym and Tapash Chakraborty, Phys. Rev. Lett. 65, 108 (1990); P. A. Maksym and Tapash Chakraborty, Phys. Rev. B 45, 1947 (1992). 4. F. Bolton, Phys. Rev. B 54, 4780 (1996). 5. R. Egger, W. Hausler, C. H. Mak, and H. Grabert, Phys. Rev. Lett. 82, 3320 (1999). 6. Daniela Pfannkuche, Vidar Gudmundsson, and Peter A. Maksym, Phys. Rev. B 47, 2244 (1993). 7. V. Fock, Z. Phys. 47, 446 (1928). 8. C. G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930). 9. Ingibjo¨rg Magnu´sdo´ttir and Vidar Gudmundsson, Phys. Rev. B 60, 16 591 (1999). 10. Ryuichi Ugajin, Phys. Rev. B 53, 6963 (1996). 11. E. P. Wigner, Phys. Rev. 46, 1002 (1934). 12. J.. H. Jefferson and Wolfgang Häusler, Phys. Rev. B 54, 4936 81996). 13. C. E. Creffield, Wolfgang Häusler, J. H. Jefferson, and Sarben Sarkar, Phys. Rev. B 59, 10 719 (1999). 14. R. E. Peierls, Z. Phys. B: Condens. Matter 80, 763 (1933). 15. R. Kotlyar, C. A. Stafford, and S. Das Sarma, Phys. Rev. B 58, 3989 (1998). 16. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64, 788 (1990). 17. P. O. Löwdin, J. Chem. Phys. 18, 365 (1950).
Collections