Publication:
Estabilidad del espectro de potencia en resting state: un estudio de fiabilidad con Magnetoencefalografía

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2014-09-24
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
La sincronización de las oscilaciones cerebrales se produce incluso en ausencia de tarea, por eso, el resting state está aportando interesantes vías de estudio de los procesos normales y patológicos. Dada la creciente necesidad por utilizar las medidas derivadas de las señales MEG en resting state como biomarcadores clínicos o en la evaluación de tratamientos, es necesario garantizar su fiabilidad. En este estudio se ha investigado por primera vez la fiabilidad de la las medidas espectrales derivadas de registros MEG explorando la estabilidad en resting state de la potencia de 10 sujetos sanos en tres sesiones con un intervalo test-retest de 7 días. A partir de las señales MEG de cada sujeto y sesión se calculó el espectro de potencia de 1 a 100Hz en cada sensor, y como medida de fiabilidad se utilizó el coeficiente de correlación intraclase (ICC). Para explorar cómo afecta la intensidad de la señal a la estabilidad, se registró la señal de la cámara vacía en cada sesión de registro y se calculó la relación señal/ruido (SNR). La potencia espectral en MEG es muy estable en las bandas de frecuencia α, β y θ, y menos estable en δ y γ-2. Con respecto a la distribución de la estabilidad, la señal capturada en la zona frontal del equipo MEG fue la menos estable a través de todas las bandas de frecuencia. La estabilidad mostró cierta tendencia a disminuir conforme disminuye la SNR; este efecto es parcial, ya que los ritmos cerebrales estables mostraron un alto ICC incluso con baja SNR. En conjunto, estos resultados sugieren que las medidas espectrales en resting state con MEG son suficientemente fiables para ser consideradas en futuros estudios longitudinales sobre cambios en la actividad cerebral.
The synchronization of cerebral oscillations takes place even in the absence of task, for that reason, resting state provides interesting lines of study of normal and pathological processes. Given the increasing necessity to use the measures derived from MEG signals in resting state as clinical biomarkers or in the evaluation of treatments, it is necessary to guarantee its reliability. In this study, the reliability of spectral measures derived from MEG recordings is investigated for the first time by means of exploring resting state stability of the power spectrum of 10 healthy subjects in three sessions with 7 days test-retest interval. The power spectrum from 1 to 100Hz was calculated for each subject, session and sensor, and intraclass correlation coefficient (ICC) was used as a measure of test-retest reliability. In order to explore how intensity of the signal affects to the reliability, empty room was recorded in each session, and the signal-to-noise ratio (SNR) was calculated. Spectral power in MEG was very reliable in α, β and θ frequency bands, and less reliable in δ and γ-2. With regard to reliability distribution, sensors covering the frontal area of the scalp were less stable in all frequency bands. The reliability showed a certain trend to fall as the SNR diminishes; this effect was partial, since stable cerebral rhythms show high ICC values even with very low SNR. Overall, these results suggest that spectral measures in resting state with MEG are sufficiently reliable to be considered for future longitudinal studies of brain activity changes.
Description
Este trabajo ha sido publicado en: Martín-Buro, María Carmen ; Garcés, Pilar ; Maestú, Fernando Test-retest reliability of resting-state magnetoencephalography power in sensor and source space Human brain mapping. Vol: 37, 1 : 179-190. Versión online: 14 octubre 2015DOI: 10.1002/hbm.23027
Keywords
Citation
Akam T, Kullmann DM (2014) Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci 15:111–122. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45–56. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248. Becker JT, Cuesta P, Fabrizio M, Sudre G, Vergis EN, Douaihy A, Bajo R, Schubert A, Lopez OL, Parkkonen L, Maestu F, Bagic A (2012) Brain structural and functional recovery following initiation of combination antiretroviral therapy. J Neurovirol 18:423–427. Biswal BB (2012) Resting state fMRI: a personal history. Neuroimage 62:938–944. Buckner R (2013) The brain’s default network: origins and implications for the study of psychosis. Dialogues Clin Neurosci:351–358. Burgess A, Gruzelier J (1993) Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalogr Clin Neurophysiol 86:219–223. Buzsáki G (2006) Rhythms of the Brain. Oxford University Press. Buzsáki G, Anastassiou C, Koch C (2012) The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929. Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225. Carretié L (2001) Psicofisiología. Madrid: Pirámide. Castellanos NP, Leyva I, Buldú JM, Bajo R, Paúl N, Cuesta P, Ordóñez VE, Pascua CL, Boccaletti S, Maestú F, del-Pozo F (2011) Principles of recovery from traumatic brain injury: reorganization of functional networks. Neuroimage 55:1189–1199. Cavanagh JF, Frank MJ (2014) Frontal theta as a mechanism for cognitive control. Trends Cogn Sci:1–8. De Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 107:6040–6045. Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, Rockstroh B, Bassett DS (2009) Reproducibility of graph metrics of human brain functional networks. Neuroimage 47:1460–1468. Fehr T, Kissler J, Moratti S, Wienbruch C, Rockstroh B, Elbert T (2001) Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients. Biol Psychiatry 50:108–116. Fernández A, Hornero R, Mayo A, Poza J, Gil-Gregorio P, Ortiz T (2006) MEG spectral profile in Alzheimer’s disease and mild cognitive impairment. Clin Neurophysiol 117:306–314. Fingelkurts A, Fingelkurts A, Ermolaev V, Kaplan A (2006) Stability, reliability and consistency of the compositions of brain oscillations. Int J Psychophysiol 59:116–126. Gasser T, Bächer P, Steinberg H, Bacher P (1985) Test-retest reliability of spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol 60:312–319. Gudmundsson S, Runarsson TP, Sigurdsson S, Eiriksdottir G, Johnsen K (2007) Reliability of quantitative EEG features. Clin Neurophysiol 118:2162–2171. Hansen P, Kringelbach M, Salmelin R (2010) MEG: An introduction to methods. Oxford. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity. Proc Natl Acad Sci U S A 106:1–6. Jensen O, Kaiser J, Lachaux J-P (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324. Jin S-H, Seol J, Kim JS, Chung CK (2011) How reliable are the functional connectivity networks of MEG in resting states? J Neurophysiol 106:2888–2895. Knyazev GG (2012) EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 36:677–695. Kondacs A, Szabó M (1999) Long-term intra-individual variability of the background EEG in normals. Clin Neurophysiol 110:1708–1716. Leonardi N, Richiardi J, Gschwind M, Simioni S, Annoni J-M, Schluep M, Vuilleumier P, Van De Ville D (2013) Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83:937–950. Maestú F, Ríos M, Cabestrero R (2008) Neuroimagen. Técnicas y procesos cognitivos. Barcelona: Masson. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104:13170–13175. McEvoy LK, Smith ME, Gevins A (2000) Test-retest reliability of cognitive EEG. Clin Neurophysiol 111:457–463. McGraw K, Wong S (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30–42. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113. Oostenveld R, Fries P, Maris E, Schoffelen JMM (2011) FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869. Pollock VE, Schneider LS, Lyness SA (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651. Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci 18:16–25. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296. Smit D, Stam C (2008) Heritability of “small world” networks in the brain: A graph theoretical analysis of resting state EEG functional connectivity. Hum Brain Mapp 29:1368–1378. Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Washington University perspective. Neuroimage 62:902–910. Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289:128–134. Stam CJ, van Cappellen van Walsum AM, Pijnenburg YAL, Berendse HW, de Munck JC, Scheltens P, van Dijk BW (2002) Generalized synchronization of MEG recordings in Alzheimer’s Disease: evidence for involvement of the gamma band. J Clin Neurophysiol 19:562–574. Taulu S, Simola J (2006) Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol 51:1759–1768. Telesford QK, Burdette JH, Laurienti PJ (2013) An exploration of graph metric reproducibility in complex brain networks. Front Neurosci 7:67. Tsiaras V, Simos PGP, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, Papanicolaou AC (2011) Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med 41:1166–1177. Van Beijsterveldt CEM, Van Baal GCM (2002) Twin and family studies of the human electroencephalogram: A review and a meta-analysis. Biol Psychol 61:111–138. Verdoorn TA, McCarten JR, Arciniegas DB, Golden R, Moldauer L, Georgopoulos A, Lewis S, Cassano M, Hemmy L, Orr W, Rojas DC (2011) Evaluation and tracking of Alzheimer’s disease severity using resting-state magnetoencephalography. J Alzheimers Dis 26 Suppl 3:239–255. Wang XX (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268. Weir JPJ (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19:231–240. Zamrini E, Maestu F, Pekkonen E (2011) Magnetoencephalography as a putative biomarker for Alzheimer’s disease. J Alzheimers Dis 2011:280289.