Publication:
Caustics, catastrophes, and symmetries in curved beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-09-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper, a meaningful classification of optical caustic beams in two dimensions is presented. It is demonstrated that the phase symmetry of the beam's angular spectrum governs the optical catastrophe, which describes the wave properties of ray singularities, for cusp (symmetric phase) and fold (antisymmetric phase) caustics. In contrast to the established idea, the caustic classification arises from the phase symmetry rather than from the phase power, thus breaking the commonly accepted concept that fold and cusp caustics are related to the Airy and Pearcey functions, respectively. Nevertheless, the role played by the spectral phase power is to control the degree of caustic curvature. These findings provide straightforward engineering of caustic beams by addressing the spectral phase into a spatial light modulator or glass plate.
Description
©2015 American Physical Society. Project TEC2014-57394-P (Spain) and CNPq 311741/2014-2 (Brazil) are acknowledged.
Keywords
Citation
[1] M. V. Berry and C. Upstill, in Progress in Optics XVIII, edited by E. Wolf (North-Holland, New York, 1989). [2] Yu. A. Kravtsov and Yu. I. Orlov, Caustics, Catastrophes and Wave Fields, 2nd ed. (Springer-Verlag, Berlin, 1999). [3] J. F. Nye, Natural Focusing and Fine Structure of Light Caustics and Wave Dislocations (Taylor & Francis, Philadelphia, 1999). [4] H. Whitney, Ann. Math. 62, 374 (1955). [5] V. I. Arnol’d, Usp. Mat. Nauk 23(1), 3 (1968); 29(2), 11 (1974); 30(5), 3 (1975). [6] R. Thom, Structural Stability and orphogenesis (Benjamin, New York, 1972). [7] E. C. Zeeman, Sci. Am. 234, 65 (1976). [8] R. Gilmore, Encyclopedia of Applied Physics (Wiley-VCH, New York, 2007). [9] V. I. Arnold, Catastrophe Theory, 3rd ed. (Springer-Verlag, Berlin, 1992). [10] G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). [11] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007). [12] Y. Kaganovsky and E. Heyman, Opt. Express 18, 8440 (2010). [13] E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev. Lett. 106, 213902 (2011). [14] L. Froehly, F. Courvoisier, A. Mathis,M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, Opt. Express 19, 16455 (2011). [15] C. J. Zapata-Rodríguez, D. Pastor, and J. J. Miret, Opt. Express 20, 23553 (2012). [16] I. D. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt. Lett. 36, 1890 (2011). [17] D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, Opt. Lett. 36, 1842 (2011). [18] I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, Phys. Rev. A 85, 023828 (2012). [19] M. V. Berry and S. Klein, Proc. Natl. Acad. Sci. USA 93, 2614 (1996). [20] J. D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, and M. R. Dennis, Opt. Express 20, 18955 (2012). [21] P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. Martinez Matos, Opt. Lett. 39, 2370 (2014). [22] P. A. Quinto-Su and R. Jáuregui, Opt. Express 22, 12283 (2014). [23] P. A. Quinto-Su and R. Jáuregui, J. Opt. Soc. Am. A 31, 2484 (2014). [24] P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. Martinez Matos, J. Opt. Soc. Am. A 32, 443 (2015). [25] X. Krokidis, S. Noury, and B. Silvi, J. Phys. Chem. A 101, 7277 (1997). [26] S. Berski, Juan Andr´es, B. Silvi, and L. R. Domingo, J. Phys. Chem. A 107, 6014 (2003). [27] N. Migranov, A. Kudreyko, and D. Kondratyev, Phys. Res. Int. 2014, 1 (2014). [28] J. G. Kim, J. W. Lee, D. C. Ihm, H. J. Lee, and E. K. Lee, J. Phys. B 36, 2267 (2003). [29] S. Rosenblum, O. Bechler, I. Shomroni, R. Kaner, T. Arusi-Parpar, O. Raz, and B. Dayan, Phys. Rev. Lett. 112, 120403 (2014). [30] N. Gouda and T. Nakamura, Prog. Theor. Phys. 81, 633 (1989). [31] N. Gouda, Prog. Theor. Phys. 99, 55 (1998). [32] M. N. M. Kaki, Gen. Math. Notes 11(2), 35 (2012). [33] I. N. Stewart and P. L. Peregoy, Psych. Bull. 94, 336 (1983). [34] V. P. Maslov, Theoria vozmushchenii I asimptoticheskie metody (Theory of Perturbations and Asymptotic Methods) (Izd. MGU, 1965) [French trans.: V. P. Maslov, Theorie des perturbations et methode asymptotique (Duod, 1972)]. [35] R. M. Lewis, Arch. Ration. Mech. Anal. 20, 191 (1965).
Collections