Publication:
Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2002-11
Authors
Konopelchenko, Boris
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-Blackwell
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A class of nonlinear problems on the plane, described by nonlinear inhomogeneous ∂¯-equations, is considered. It is shown that the corresponding dynamics, generated by deformations of inhomogeneous terms (sources), is described by Hamilton–Jacobi-type equations associated with hierarchies of dispersionless integrable systems. These hierarchies are constructed by applying the quasiclassical ∂¯-dressing method.
Description
©2002 by the Massachusetts Institute of Technology. The authors are very grateful to the Isaac Newton Institute for Mathematical Sciences of Cambridge, where this work has been done and written, for the kind hospitality. They are also grateful to the organizers of the programme “Integrable Systems” for the support provided. L. Martínez Alonso wishes to thank the Fundacion Banco Bilbao Vizcaya Argentaria for supporting his stay at Cambridge University as a BBV visiting professor.
Unesco subjects
Keywords
Citation
1. B. A. KUPERSHMIDT and YU. I. MANIN, Long wave equations with a free boundary. I, Funkts. Anal. Prilozh. 11(3):31 (1977); II, Funkts. Anal. Prilozh. 12(1):25 (1978); D. R. LEBEDEV and YU. I. MANIN, Conservation laws and Lax representation of Benney’s long wave equations, Phys. Lett. A 74:154–156 (1979). 2. V. E. ZAKHAROV, Benney equations and quasi-classical approximation in the inverse problem method, Func. Anal. Priloz.14:89–98 (1980). 3. P. D. LAX and C. D. LEVERMORE, The small dispersion limit on the Korteweg–de Vries equation, Commun. Pure Appl. Math. 36:253–290, 571–593, 809–830 (1983). 4. I. M. KRICHEVER, Averaging method for two- dimensional integrable equations, Funkts. Anal. Priloz. 22:37–52 (1988). 5. Y. KODAMA, A method for solving the dispersionless KP equation and its exact solutions, Phys. Lett. A 129:223– 226 (1988); Y. Kodama, Solutions of the dispersionless Toda equation, Phys. Lett. A 147:477–482 (1990). 6. B. A. DUBROVIN and S. P. NOVIKOV, Hydrodynamics of weakly deformed soliton lattices: Differential geometry and Hamiltonian theory, Russian Math. Surveys, 44:35–24 (1989). 7. K. TAKASAKI and T. TAKEBE, SDIFF (2) KP hierarchy, Int. J. Mod. Phys. A 7(1B):889–922 (1992). 8. I. M. KRICHEVER, The τ -function of the universal Whitham hierarchy, matrix models and topological field theories, Commun. Pure Appl. Math. 47:437–475 (1994). 9. N. M. ERCOLANI et al. (Eds.), Singular limits of dispersive waves, Nato Adv. Sci. Inst. Ser. B Phys., 320, Plenum, New York, 1994. 10. V. E. ZAKHAROV, Dispersionless limit of integrable system in 2 + 1 dimensions, in Nato Adv. Sci. Inst. Ser. B Phys., Vol. 320, pp. 165–174, Plenum, New York, 1994. 11. K. TAKASAKI and T. TAKEBE, Integrable hierarchies and dispersionless limit, Rev. Math. Phys. 7:743–818 (1995). 12. R. CARROLL and Y. KODAMA, Solutions of the dispersionless Hirota equations, J. Phys. A: Math. Gen. 28:6373–6387 (1995). 13. S. JIN, C. D. LEVERMORE, and D. W. MCLAUGHLIN, The semiclassical limit of the defocusing NLS hierarchy, Comm. Pure and Appl. Math. 52:613–654 (1999). 14. I. M. KRICHEVER, The dispersionless Lax equations and topological minimal models, Commun. Math. Phys. 143:415–429 (1992). 15. B. A. DUBROVIN, Hamiltonian formalism of Whitham- type hierarchies and topological Landau-Ginzburg models, Commun. Math. Phys. 145:195–203 (1992); B. A. DUBROVIN and Y. ZHANG, Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation, Commun. Math. Phys. 198:311–361 (1998); B. A. DUBROVIN and Y. ZHANG, Normal forms of hierarchies of integrable PDEs, Frobenious manifolds and Gromov– Witten invariants, arXiv:math.DG/0108160 v1 (2001). 16. S. AOYAMA and Y. KODAMA, Topological Landau– Ginzburg theory with rational potential and the dispersionless KP hierarchy, Commun. Math. Phys. 182:185–219 (1996); M. DUNAISKI, L. J. MASON, and P. TOD, Einstein–Weyl geometry, the dKP equation and twistor theory, J. Geom. Phys. 37:63–93 (2001); L. A. TAKHTAJAN, Free bosons and tau-function for compact Riemann surfaces and smooth Jordan curves. I. Current correlation functions, Lett. Math. Phys. 56:181–228 (2001). 17. J. GIBBONS and S. P. TSAREV, Conformal maps and reductions of the Benney equations, Phys. Lett. A 258:263–271 (1999). 18. P. B. WIEGMANN and A. ZABRODIN, Conformal maps and integrable hierarchies, Commun. Math. Phys. 213:523–538 (2000); M. MINEEV-WEINSTEIN, P. B. WIEGMANN, and A. ZABRODIN, Integrable structure of interface dynamics, Phys. Rev. Lett. 84:5106–5108 (2000); I. K. KOSTOV, I. KRICHEVER, M. MINEEV-WEINSTEIN, P. B. WIEGMANN, and A. ZABRODIN, τ -function for analytic curves, in Random Matrices and their Applications, Vol. 40, pp. 1–15, MSRI Publications, 2001; A. MARSHAKOV, P. WIEGMANN, and A. ZABRODIN, Integrable structure of the Dirichlet boundary problem in two dimensions, arXiv:hep-th/0109048 (2001). 19. B. G. KONOPELCHENKO, L. MARTÍNEZ ALONSO, and O. RAGNISCO, The ∂¯-approach to the dispersionless KP hierarchy, J. Phys. A: Math. Gen. 34:10209–10217 (2001). 20. B. G. KONOPELCHENKO and L. MARTÍNEZ ALONSO, ∂¯-equations, integrable deformations of quasiconformal mappings and Whitham hierarchy, Phys. Lett. A 286:161–166 (2001). 21. B. G. KONOPELCHENKO and L. MARTÍNEZ ALONSO, Dispersionless scalar hierarchies, Whitham hierarchy and the quasi-classical ∂¯-method, arXiv: nlin: SI/0105071 (2001). 22. L. V. AHLFORS, Lectures on Quasi-Conformal Mappings, D. Van Nostrand C., Princeton, 1966. 23. Q. LEHTO and K. I. VIRTANEN, Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin, 1973. 24. S. L. KRUSHKAL, Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1979. 25. R. P. GILBERT and WEN GUO-CHUN, Free boundary problems occuring in planar fluid dynamics, Nonlinear Anal., Theory, Methods, Appl. 13:285–303 (1989). 26. M. BOUKROUCHE, The quasiconformal mapping methods to solve a free boundary problem for generalized Hele-Show flows, Complex Variables 28:227– 242 (1996). 27. B. BOJARSKI, Quasiconformal mappings and general structural properties of systems of nonlinear equations elliptic in the sense of Lavrent’ev, Symposia Mathematica 18:485–499 (1976). 28. T. IWANIEC, Quasiconformal mapping problem for general nonlinear systems of partial differential equations, Symposia Mathematica 18:501–517 (1976). 29. O. MARTIO, Partial differential equations and quasiregular mappings, in Lecture Notes in Math. Vol. 1508, pp. 6579, 1992. 30. V. E. ZAKHAROV and S. V. MANAKOV, Construction of multidimensional nonlinear integrable systems and their solutions, Funkts. Anal. Prilozh. 19:89–101 (1985). 31. V. E. ZAKHAROV, On the inverse method, in Inverse Problems in Action (P. Sabatier, Ed.) p. 602, Springer- Verlag, Berlin, 1990. 32. B. G. KONOPELCHENKO, Solitons in Multidimensions, World Scientific, Singapore, 1993. 33. I. N. VEKUA, Generalized Analytic Functions, Pergamon Press, Oxford, 1962. 34. A. HURWITZ and R. COURANT, Theory of Functions, Springer-Verlag, Berlin, 1964; G. Springer, Introduction to Riemann Surfaces, Chelsea, New York, 1981. 35. T. MIWA, On Hirota’s difference equations, Proc. Japan Acad. Ser. A 58:8–11 (1982). 36. B. A. KUPERSCHMIDT, The quasiclassical limit of the modified KP hierarchy, J. Phys. A: Math. Gen. 23:876–886 (1990). 37. L. V. BOGDANOV, B. KONOPELCHENKO, and L. MARTÍNEZ ALONSO, Quasi-classical ∂¯-dressing method: Generating equations for dispersionless integrable hierarchies, arXiv:nlin.SI/ 0111062 (2001). 38. B. G. KONOPELCHENKO, Soliton eigenfunction equations: The IST integrability and some properties, Rev. Math. Phys. 2:399–440 (1990). 39. B. G. KONOPELCHENKO, Nets in R3, their integrable evolutions and the DS hierarchy, Phys. Lett. A183:153– 159 (1993). 40. L. P. NIZHNIK, Integration of multidimensional nonlinear equations by the method of inverse problem, DAN SSSR 254:332 (1980). 41. A. P. VESELOV and S. P. NOVIKOV, Finite-zone two- dimensional potential Schrodinger operators. Explicit formulae and evolution equations, DAN SSSR 279:20–24 (1984). 42. G. DARBOUX, Lecons sur les systemes orthogonaux et les coordonnes curvilignes, Hermann, Paris, 1910.
Collections