Publication:
Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005
Authors
García Herrera, Ricardo
Díaz, J.
Trigo, R. M.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
European Geosciences Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a V C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP), 500 hPa geo-potential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air flows over the central Iberian plateau, which had been previously healed.
Description
© European Geosciences Union 2005. NCEP/NCAR reanalysis data were obtained from the Climate Prediction Centre. The Atlantic-European window used here was kindly provided by Ian Harris and David Viner from the Climatic Research Unit. The authors would like to acknowledge Isabel Trigo from CGUL for helpful suggestions on a earlier version of this paper. Spanish Instituto Nacional de Meteorología provided Meteorological data from Madrid. Two anonimous reviewers provided helpful comments which improved considerably the original manuscript. Topical Editor O. Boucher thanks two referees for their help in evaluating this paper.
Unesco subjects
Keywords
Citation
Alberdi, J. C. and Díaz, J. : Modelización de la mortalidad diaria en la Comunidad Autónoma de Madrid (1986–1991). Gac Sanit, 11, 9–15, 1997. Alberdi, J. C., Díaz, J., Montero, J. C., and Mirón, I. J.: Daily Mortality in Madrid Community (Spain) 1986–1991: Relationship with atmospheric variables. Eur. J. Epidemiol, 14, 571–578, 1998. Box, G. E., Jenkins, G. M., and Reinsel, C.: Time Series Analysis. Forecasting and Control. Englewood. Prentice Hall, 1994. Curreiro, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L., Patz, J. A.: Temperature and mortality in 11 cities of the Eastern of the United States. Am. J. Epidemiol, 155, 80–87, 2002. Davis, R. E., Knappenberger, P. C., Michaels, P. J. and Novicoff, W. M. et al.: Changing Heat-related Mortality in the United States, Environ. Health Perspec., 111, 1712–1718, 2003. Davis, R. E., Davis, R. E., Knappenberger, P. C., Michaels, P. J., and Novicoff, W. M. : Seasonality of climate-human mortality relationships in US cities and impacts of climate change. Clim. Res., 26, 61–76. 2004. Dessai, S.: Heat stress and mortality in Lisbon. Part I: model construction and validation. Int. J. Biometeorol. 47, 6–12, 2002. Dessai S.: Heat stress and mortality in Lisbon. Part II: an assessment of the potential impacts of climate change. Int. J. Biometeorol. 48, 37–44, 2003. Díaz, J., García, R., Ribera, P., and Alberdi, J. C. et al.: A Modelling of Air Pollution and its Relationship with Mortality and Morbidity in Madrid (Spain). Int. Arch. Occ. Env. Health, 72, 366–376, 1999. Díaz, J., López, C., Alberdi, J. C., Jordán, A., García, R., Hernández, E., and Otero, A.: Heat Waves in Madrid, 1986-1997: Effects on the health of the elderly. Int. Arch. Occ. Env. Health. 75, 163–170, 2002a. Díaz, J., García, R., Velázquez de Castro, F., Hernández, E., López, C., and Otero, A.: Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int. J. Biometeorol, 46, 145–149, 2002b. Donaldson, G. C., Keatinge, W. R., and Näyhä, S. et al.: Changes in summer temperature and heat-related mortality since 1971 in North Carolina, South Finland, and Southeast England. Environ. Res., 91, 1–7, 2003. Frich, P., Alexander, L. V., Della-Marta, P., Gleason, P., Haylock, M., Klein Tank, A. M. G, and Peterson, T.: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193–212, 2002. García R, Prieto, L., Díaz, J., Hernández, E., and del Teso, T.: Synoptic condition leading extremely high temperatures in Madrid. Ann. Geophys., 20, 237–245, 2002. Greene, J. S. and Kalkstein, L. S.: Quantitative analysis of summer air masses in the eastern United States and an application to human mortality. Climate Res., 7, 43–53, 1996. Grynszpan, D.: Lessons from the French heatwave. Lancet, 362, 1169–1170, 2004. Guest, C. S., Wilson, K., Woodward, A., Hennessy, K., Kalkstein, L. S., Skinner, C., and McMichael, A. J.: Climate and mortality in Australia: retrospective study, 1979–1990 and predicted impacts in five major cities. Climate Res., 13, 1–15, 1999. Huynen, M. M., Martens, P., Schram, D., Weijenberg, M. P., and Kunst, A. E.: The impact of the heat waves and cold spells on mortality rates in the Dutch population. Environ Health Persp., 109, 463–470, 2001. IPCC. Climate Change 2001: the scientific basis. Cambridge University Press, Cambridge, UK, 881, 2001. Kalnay, E., Kanamitsu, M., Kistler, R., Colins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Wollen, J., Zhu, Y., Cheliqh, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., and Jenne, J. D.: The NCEP/NCAR 40-years reanalyses project. Bull. Am. Meteorol. Soc., 77, 437–471, 1996. Kalkstein, L. S.: A new approach to evaluate the impact of climate on human mortality. Environ. Health Perspect., 96, 145–150, 1991. Kalkstein, L. S. and Smoyer, K.: The impact of climate change on human health: some international implications. Experientia, 49, 469–479, 1993. Kalkstein, L. S., Jamason, P. F., Greene, J. S., Libby, J., and Robinson, L.: The Philadelphia Hot Weather-Health Watch/Warning System: Development and Application, Summer 1995. Bull. Am. Meteorol. Soc., 77, 1519–1528, 1996. Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K., Lindseay, J., Charlson, R. J., and Peterson, T. C.: Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteorol. Soc., 74, 1007–1023, 1993. Keatinge, W. R., Donaldson, G. C., and Cardioli, E. et al.: Heat related mortality in warm and cold regions of Europe: observational study. Brit. Med. J., 321, 670–673, 2000. Kelsall, J. E., Samet, J. M., and Zeger, S. L.: Air Pollution and mortality in Philadelphia, 1974–1988. Am. J. Epidemiol, 146, 750–762, 1997. Khaw, K. T.: Temperature and cardiovascular mortality. Lancet, 345, 337–338, 1995. Klein-Tank, A. M. G., Wijngaard, J. B., Können et al.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol, 22, 1441– 1453, 2002. Koppe, C., Kovasts, S., Jendritzky, G., and Menne, B. et al.: Heatwaves: risks and responses. WHO Health and Global Environmental Change Serie n◦ 2. WHO Geneva, 123, 2004. Kunst, A. E., Looman, C. W. N., and Mackenbach, J. P.: Outdoor Air Temperature and Mortality in the Netherlands. A time-series analysis. Am. J. Epidemiol, 137, 331–341, 1993. Laschewski, G. and Jendritzky, G.: Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Res., 21, 91–103, 2002. Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H.: European seasonal and annual temperature variability, tends and extremes since 1500 A. D., Science, 3, 1499–1503, 2004. Makridakis, S., Wheelwright, S. C., and McGee, V. E.: Forecasting Methods and Applications. Wiley and Sons. S. Francisco. 1983. Martens, W. J. M.: Climate change, thermal stress and mortality changes. Soc. Sci. Med., 46, 331–344, 1998. McGeehin, M. A. and Mirabelli, M.: The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ Health Persp., 109, 185–189, 2001. McGregor, G. R.: Winter ischaemic heart disease deaths in Birmingham, United Kingdom: a synoptic climatological analysis. Climate Res., 13, 17–31, 1999. Montero, J. C., Mirón, I. J., Díaaz, J., Alberdi, J.C.: Influencia de variables atmosféricas sobre la mortalidad por enfermedades respiratorias y cardiovasculares en los mayores de 65 años en la Comunidad de Madrid. Gac. Sanit. 11, 164–170, 1997. Nakai, S., Itoh, T., and Morimoto, T.: Deaths from Heat-stroke in Japan: 1968–1994. Int. J. Biometeorol., 43, 124–127, 1999. Naughton, M. P., Henderson, A., Mirabelli, M. C., and Kaiser, R. et al.: Heat-related mortality during a 1999 heat wave in Chicago. Am. J. Prev. Med., 22, 221–227, 2002. North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J.: Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev., 110, 699–706, 1982. Pan, W. H., Li, L. A., and Tsai, M. J.: Temperature Extremes and Mortality from Coronary Heart Disease and Cerebral Infarction in Elderly Chinese. Lancet 345, 353–355, 1995. Pardo, A. and Ruiz, M. A.: SPSS11. Guía para el análisis de datos. Ed. McGrawhill, Madrid 2002. Preisendorfer, R. W.: Principal Component Analysis in Meteorology and Oceanography. Developments in Atmospheric Science, 17, Elsevier, 1988. Sáez, M., Sunyer, J., Castellsagué, J., Murillo, C., Antó J. M.: Relationship between Weather Temperature and Mortality: A time series analysis approach in Barcelona. Int. J. Epidemiol., 24, 576–582, 1995. Santos, F. D., Forbes, K., and Moita, R.: Climate Change in Portugal. Scenarios, impacts and Adaptaion Measures – SIAM. Gradiva, Lisbon, 2002. Sartor, F., Snacken, R., Demuth, C., and Walkiers, D.: Temperature, Ambient Ozone Levels and Mortality during Summer 1994 in Belgium. Environ. Res., 70, 105–113, 1995. Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., and Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves, Nature, doi:10.1038/nature02300, 2004. Smoyer, K. E.: A Comparative Analysis of Heat-wave Associated Mortality in St. Louis, Missouri-1980 and 1995. Int. J. Biometeorol., 42, 44–50, 1998. Tobías, A., Díaz, J., Sáez, M., and Alberdi, J. C.: Use of Poisson regression and Box-Jenkins models to evaluate the short-term effects of environmental noise levels on daily emergency admissions in Madrid, Spain. Eur. J. Epidemiol., 17, 765–771, 2001. Trigo, R. M. and Palutikof, J. P.: Simulation of daily temperatures for climate change detection over Portugal: A neural network model approach. Climate Res., 13, 45–49, 1999. Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of cyclogenesis in the Mediterranean. Mon. Weather Rev., 130, 549–569, 2002. Trigo, R. M. and Palutikof, J. P.: Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J. Climate, 14, 4422–4446, 2001. Trigo, R. M., Trigo, I. F., DaCamara, C. C., and Osborn, T. J.: Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses. Climate Dynamics, 23, 17–28, 2004. Ungar, S.: Is Strange Weather in the Air? A Study of U.S. National Network News Coverage of Extreme Weather Events. Climatic. Change, 41, 133–150, 1999. Wilks, D. S.: Statistical Methods in the Atmospheric Sciences: an introduction. Intern. Geophy. Ser., 59, Academic Press, 1995. WHO Heat-waves: risks and responses. Health and Environmentl change. WHO Series N◦ 2, Geneva, 2004.
Collections