Publication:
In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilicintraocular lenses

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
PURPOSE: To measure the longitudinal chromatic aberration invivo using psychophysical and wavefront-sensing methods in patients with bilateral implantation of monofocal intraocular lenses (IOLs) of similar aspheric design but different materials (hydrophobic Podeye and hydrophilic Poday). SETTING: Instituto de Optica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain. DESIGN: Prospective observational study. METHODS: Measurements were performed with the use of psychophysical (480 to 700 nm) and wavefront-sensing (480 to 950 nm) methods using a custom-developed adaptive optics system. Chromatic difference-of-focus curves were obtained from best-focus data at each wavelength, and the longitudinal chromatic aberration was obtained from the slope of linear regressions to those curves. RESULTS: The longitudinal chromatic aberration from psychophysical measurements was 1.37 diopters (D) ± 0.08 (SD) (hydrophobic) and 1.21 ± 0.08 D (hydrophilic). From wavefront-sensing, the longitudinal chromatic aberration was 0.88 ± 0.07 D and 0.73 ± 0.09 D, respectively. At 480 to 950 nm, the longitudinal chromatic aberration was 1.27 ± 0.09 D (hydrophobic) and 1.02 ± 0.13 D (hydrophilic). The longitudinal chromatic aberration was consistently higher in eyes with the hydrophobic IOL than in eyes with the hydrophilic IOL (a difference of 0.16 D and 0.15 D, respectively). Similar to findings in young phakic eyes, the longitudinal chromatic aberration from the psychophysical method was consistently higher than from wavefront-sensing, by 0.48 D (35.41%) for the hydrophobic IOL and 0.48 D (39.43%) for the hydrophilic IOL. CONCLUSION: Longitudinal chromatic aberrations were smaller with hydrophilic IOLs than with hydrophobic IOLs of the same design.
Description
Received 16 January 2015, Revised 30 March 2015, Accepted 31 March 2015, Available online 17 December 2015
Keywords
Citation
1. L.N. Thibos, A. Bradley, X. Zhang. Effect of ocular chromatic aberration on monocular visual performance. Optom Vis Sci, 68 (1991), pp. 599–607 Available at: http://journals.lww.com/optvissci/Abstract/1991/08000/Effect_of_Ocular_Chromatic_Aberration_on_Monocular.5.aspx. Accessed August 31, 2015 2. W.N. Charman. Optics of the human eye. J. Cronly-Dillon (Ed.), Visual Optics and Instrumentation, CRC Press, Boca Raton, FL (1991), pp. 1–26 Available at: http://roorda.vision.berkeley.edu/Proseminar/readings/Charman.PDF. Accessed August 31, 2015 3. K. Graef, F. Schaeffel. Control of accommodation by longitudinal chromatic aberration and blue cones. J Vis, 12 (1) (2012), p. 14 Available at: http://jov.arvojournals.org/article.aspx?articleid=2191954. Accessed August 31, 2015 4. R.E. Bedford, G. Wyszecki. Axial chromatic aberration of the human eye. J Opt Soc Am, 47 (1957), pp. 564–565 5. J.S. McLellan, S. Marcos, P.M. Prieto, S.A. Burns. Imperfect optics may be the eye’s defense against chromatic blur. [letter] Nature, 417 (2002), pp. 174–176 Available at: http://www.opt.indiana.edu/people/faculty/burns/pub/McLellan_211_Final.pdf. Accessed August 31, 2015 6. S. Ravikumar, L.N. Thibos, A. Bradley. Calculation of retinal image quality for polychromatic light. J Opt Soc Am A Opt Image Sci Vis, 25 (2008), pp. 2395–2407 7. X. Zhang, L.N. Thibos, A. Bradley. Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration. Optom Vis Sci, 74 (1997), pp. 563–569 Available at: http://journals.lww.com/optvissci/Abstract/1997/07000/Wavelength_Dependent_Magnification_and.26.aspx. Accessed August 31, 2015 8. C. Ware. Human axial chromatic aberration found not to decline with age. Graefes Arch Clin Exp Ophthalmol, 218 (1982), pp. 39–41 9. P.A. Howarth, X.X. Zhang, A. Bradley, D.L. Still, L.N. Thibos. Does the chromatic aberration of the eye vary with age? J Opt Soc Am A, 5 (1988), pp. 2087–2092 10. G. Wald, D.R. Griffin. The change in refractive power of the human eye in dim and bright light. J Opt Soc Am, 37 (1947), pp. 321–336 11. B. Gilmartin, R.E. Hogan. The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm. Vision Res, 25 (1985), pp. 1747–1753 12. S. Marcos, S.A. Burns, E. Moreno-Barriusop, R. Navarro. A new approach to the study of ocular chromatic aberrations. Vision Res, 39 (1999), pp. 4309–4323 13. H. Helmholtz. Helmholtz’s Treatise on Physiological Optics, translated from the third German edition. J.P.C. Southall (Ed.), The Optical Society of America, 1924. Electronic version, 1University of Pennsylvania, Rochester, NY (2001) chapt 13. Chromatic aberration in the eye. Available at: http://poseidon.sunyopt.edu/BackusLab/Helmholtz/. Accessed August 31, 2015 14. D.A. Atchison, G. Smith. Optics of the Human Eye. Butterworth Heinemann (2000), pp. 160–169 15. W.N. Charman, J.A.M. Jennings. Objective measurements of the longitudinal chromatic aberration of the human eye. Vision Res, 16 (1976), pp. 999–1005 16. M.C. Rynders, R. Navarro, M.A. Losada. Objective measurement of the off-axis longitudinal chromatic aberration in the human eye. Vision Res, 38 (1998), pp. 513–522 17. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos. Aberrations of the human eye in visible and near infrared illumination. Optom Vis Sci, 80 (2003), pp. 26–35 Available at: http://digital.csic.es/bitstream/10261/8685/3/Aberrations_human_eye.pdf. Accessed August 31, 2015 18. E.J. Fernández, A. Unterhuber, P.M. Prieto, B. Hermann, W. Drexler, P. Artal. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. Opt Express, 13 (2005), pp. 400–409 Available at: https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-13-2-400&seq=0. Accessed October 31, 2015 19. E.J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, W. Drexler. Chromatic aberration correction of the human eye for retinal imaging in the near infrared. Opt Express, 14 (2006), pp. 6213–6225 Available at: https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-14-13-6213&seq=0. Accessed August 31, 2015 20. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, S. Marcos. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront-sensing, double-pass and psychophysics. Biomed Opt Express, 6 (2015), pp. 948–962 Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361447/pdf/948.pdf. Accessed August 31, 2015 21. J.T. Holladay, P.A. Piers, G. Koranyi, M. van der Mooren, N.E.S. Norrby. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg, 18 (2002), pp. 683–691 22. S. Marcos, S. Barbero, I. Jiménez-Alfaro. Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses. J Refract Surg, 21 (2005), pp. 223–235 23. J. Tabernero, P. Piers, A. Benito, M. Redondo, P. Artal. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Invest Ophthalmol Vis Sci, 47 (2006), pp. 4651–4658 Available at: http://iovs.arvojournals.org/article.aspx?articleid=2124955. Accessed August 31, 2015 24. P.A. Piers, H.A. Weeber, P. Artal, S. Norrby. Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses. J Refract Surg, 23 (2007), pp. 374–384 25. A. Franchini. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses. J Cataract Refract Surg, 33 (2007), pp. 497–509 26. H. Zhao, M.A. Mainster. The effect of chromatic dispersion on pseudophakic optical performance. Br J Ophthalmol, 91 (2007), pp. 1225–1229 Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1954934/pdf/1225.pdf. Accessed August 31, 2015 27. T. Nagata, S. Kubota, I. Watanabe, S. Aoshima. [Chromatic aberration in pseudophakic eyes]. [Japanese] Nippon Ganka Gakkai Zasshi, 103 (1999), pp. 237–242 28. K. Negishi, K. Ohnuma, N. Hirayama, T. Noda. Policy-Based Medical Services Network Study Group for Intraocular Lens and Refractive Surgery. Effect of chromatic aberration on contrast sensitivity in pseudophakic eyes. Arch Ophthalmol, 119 (2001), pp. 1154–1158 Available at: http://archopht.jamanetwork.com/article.aspx?articleid=267417. Accessed August 31, 2015 29. P. Artal, S. Manzanera, P. Piers, H. Weeber. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Opt Express, 18 (2010), pp. 1637–1648 Available at: https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-18-2-1637&seq=0. Accessed August 31, 2015 30. H.A. Weeber, P.A. Piers. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. J Refract Surg, 28 (2012), pp. 48–52 31. D. Siedlecki, H.S. Ginis. On the longitudinal chromatic aberration of the intraocular lenses. Optom Vis Sci, 84 (2007), pp. 984–989 Available at: http://journals.lww.com/optvissci/Fulltext/2007/10000/On_the_Longitudinal_Chromatic_Aberration_of_the.14.aspx. Accessed August 31, 2015 32. C.W. Bobier, J.G. Sivak. Chromoretinoscopy. Vision Res, 18 (1978), pp. 247–250 33. P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, S. Marcos. In vivo chromatic aberration in eyes implanted with intraocular lenses. Invest Ophthalmol Vis Sci, 54 (2013), pp. 2654–2661 Available at: http://iovs.arvojournals.org/article.aspx?articleid=2189112. Accessed August 31, 2015 34. D. Siedlecki, A. Jóźwik, M. Zając, A. Hill-Bator, A. Turno-Kręcicka. In vivo longitudinal chromatic aberration of pseudophakic eyes. Optom Vis Sci, 91 (2014), pp. 240–246 Available at: http://journals.lww.com/optvissci/Fulltext/2014/02000/In_Vivo_Longitudinal_Chromatic_Aberration_of.17.aspx. Accessed August 31, 2015 35. F.C. Delori, R.H. Webb, D.H. Sliney. Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis, 24 (2007), pp. 1250–1265 Available at: https://www.osapublishing.org/view_article.cfm?gotourl=https%3A%2F%2Fwww%2Eosapublishing%2Eorg%2FDirectPDFAccess%2F337B0A11%2DD4DF%2DB53C%2D6E4146469CD49D65%5F132117%2Fjosaa%2D24%2D5%2D1250%2Epdf%3Fda%3D1%26id%3D132117%26seq%3D0%26mobile%3Dno&org=. Accessed August 31, 2015 36. American National Standards Institute, Inc. American National Standard for Safe Use of Lasers. New York, NY, ANSI Z.136.1–2007. Available at: https://www.lia.org/PDF/Z136_1_s.pdf. Accessed August 31, 2015 37. J.I.W. Morgan, J.J. Hunter, B. Masella, R. Wolfe, D.C. Gray, W.H. Merigan, F.C. Delori, D.R. Williams. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium. Invest Ophthalmol Vis Sci, 49 (2008), pp. 3715–3729 Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790526/pdf/nihms158961.pdf. Accessed August 31, 2015 38. L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, R. Webb. VSIA Standards Taskforce Members. Standards for reporting the optical aberrations of eyes. J Refract Surg, 18 (2002), pp. S652–S660 Available at: http://voi.opt.uh.edu/2000-JRS-standardsforrepotingtheopticalaberrationsofeyes.pdf. Accessed August 31, 2015 39. D.R. Williams, D.H. Brainard, M.J. McMahon, R. Navarro. Double-pass and interferometric measures of the optical quality of the eye. J Opt Soc Am A Opt Image Sci Vis, 11 (1994), pp. 3123–3135 40. F.C. Delori, K.P. Pflibsen. Spectral reflectance of the human ocular fundus. Appl Opt, 28 (1989), pp. 1061–1077 41. F.W. Campbell, R.W. Gubisch. The effect of chromatic aberration on visual acuity. J Physiol, 192 (1967), pp. 345–358 Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1365561/pdf/jphysiol01116-0087.pdf. Accessed August 31, 2015 42. G.-Y. Yoon, D.R. Williams. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A Opt Image Sci Vis, 19 (2002), pp. 266–275 Available at: http://www.cvs.rochester.edu/williamslab/drw_pubs/yoon_josa2002.pdf. Accessed August 31, 2015
Collections