Publication:
Slowing-down of non-equilibrium concentration fluctuations in confinement

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
European Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Fluctuations in a fluid are strongly affected by the presence of a macroscopic gradient making them long- ranged and enhancing their amplitude. While small-scale fluctuations exhibit diffusive lifetimes, moderate-scale fluctuations live shorter because of gravity. In this letter we explore fluctuations of even larger size, comparable to the extent of the system in the direction of the gradient, and find experimental evidence of a dramatic slowing-down of their dynamics. We recover diffusive behavior for these strongly confined fluctuations, but with a diffusion coefficient that depends on the solutal Rayleigh number. Results from dynamic shadowgraph experiments are complemented by theoretical calculations and numerical simulations based on fluctuating hydrodynamics, and excellent agreement is found. Hence, the study of the dynamics of non-equilibrium fluctuations allows to probe and measure the competition of physical processes such as diffusion, buoyancy and confinement, i.e. the ingredients included in the Rayleigh number, which is the control parameter of our system.
Description
© European Physical Society. We acknowledge fruitful discussions with ALBERTO VAILATI, DORIANO BROGIOLI, ROBERTO CERBINO and JAN SENGERS. JMOZ acknowledges support from the UCM-Santander Research Grant PR6/13-18867 during a sabbatical leave in Anglet. AD was supported in part by the U.S. National Science Foundation under grant DMS-1115341 and the Office of Science of the U.S. Department of Energy through Early Career award No. DE-SC0008271.
UCM subjects
Unesco subjects
Keywords
Citation
[1] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [2] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Ann. Rev. Phys. Chem. 45, 213 (1994). [3] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic fluctuations in fluids and fluid mixtures (Elsevier, Amsterdam, 2006). [4] J. V. Sengers and J. M. H. L. Sengers, Annu. Rev. Phys. Chem. 37, 189 (1986). [5] A. Vailati and M. Giglio, Nature 390, 262 (1997). [6] A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). [7] J. M. Ortiz de Zárate, J. A. Fornés and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). [8] F. Croccolo, D. Brogioli, A. Vailati, M. Giglio and D. S. Cannell, Phys. Rev. E 76, 041112 (2007). [9] P. N. Segrè, R. Schmitz and J. V. Sengers, Physica A 195, 31 (1993). [10] P. N. Segrè, and J. V. Sengers, Physica A 198, 46 (1993). [11] F. Croccolo, D. Brogioli, A. Vailati, M. Giglio and D. S. Cannell, App. Opt. 45, 2166 (2006). [12] F. Croccolo, H. Bataller, and F. Scheffold, J. Chem. Phys. 137, 234202 (2012). [13] C. Giraudet, H. Bataller, and F. Croccolo, Eur. Phys. J. E, 37, 107 (2014). [14] F. Croccolo, H. Bataller, and F. Scheffold, Eur. Phys. J. E, 37, 105 (2014). [16] J. K. Platten, M. M. Bou-Ali, P. Costesèque, J. F. Dutrieux, W. Köhler, C. Leppla, S. Wiegand, and G. Wittko, Phil. Mag. 83, 1965 (2003). [17] F. Croccolo, F. Scheffold and A. Vailati, Phys. Rev. Lett. 111, 014502 (2013). [18] C. Soret, Arch. Sci. Phys. Nat. 3, 48 (1879). [19] S. R. de Groot and P. Mazur, Nonequilibrium thermodynamics (North-Holland, Amsterdam, 1962). [20] A. Ryskin, H. W. Müller, and H. Pleiner, Phys. Rev. E 67, 046302 (2003). [21] G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, Berlin, 2001). [22] S. Trainoff, and D. S. Cannell, Phys. Fluids 14, 1340 (2002). [23] F. Croccolo, and D. Brogioli, App. Opt. 50, 3419–3427 (2011). [25] R. Cerbino, and V. Trappe, Phys. Rev. Lett. 100, 188102 (2008). [27] C. J. Takacs, G. Nikolaenko and D. S. Cannell, Phys. Fluids 100, 234502 (2008). [28] F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin, SIAM J. Multiscale Model. Simul. 10, 1369 (2012). [29] S. Delong, Y. Sun, B.E. Griffith, E. Vanden-Eijnden and A. Donev, Phys. Rev. E, 90,, 063312 (2014). [30] A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell and M. Giglio, Nature Comm. 2, 290 (2011). [31] P. G. de Gennes, Physica A 25, 825 (1959). [1] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic fluctuations in fluids and fluid mixtures (Elsevier, Amsterdam, 2006). [2] J. M. Ortiz de Zárate, J. A. Fornés and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). [3] M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). [4] A. Donev, T. G. Fai, and E. Vanden-Eijnden, J. Stat. Mech. P04004 (2014). [6] F. Croccolo, H. Bataller, and F. Scheffold, J. Chem. Phys. 137, 234202 (2012). [7] P. N. Segrè, R. Schmitz and J. V. Sengers , Physica A 195, 31 (1993). [8] P. N. Segrè, and J. V. Sengers , Physica A 198, 46 (1993). [9] A. Ryskin, H. W. Müller, and H. Pleiner, Phys. Rev. E 67, 046302 (2003). [10] F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin, SIAM J. Multiscale Model. Simul. 10, 1369 (2012). [11] S. Delong, Y. Sun, B.E. Griffith, E. Vanden-Eijnden and A. Donev, submitted, http://arxiv.org/abs/1410.0240. [12] B. E. Griffith, R. D. Hornung, D. M. McQueen and C. S. Peskin, J. Comput. Phys. 223, 10 (2007). Software available at http:\\ibamr.googlecode.com [13] S. Trainoff, and D. S. Cannell, Phys. Fluids 14, 1340 (2002).
Collections