Publication:
Undecidability of the spectral gap

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-12-10
Authors
Cubbit, Toby S.
Wolf, Michael M.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The spectral gap-the energy difference between the ground state and first excited state of a system-is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.
Description
Supplementary material: http://eprints.sim.ucm.es/38062/
Keywords
Citation
I. Affleck et al. “Valence bond ground states in isotropic quantum antiferromagnets”. CMP 115 (3 1988), p. 477. D. Aharonov et al. “Adiabatic quantum computation is equivalent to standard quantum computation”. SIAM Journal of Computing 37 (2007), pp. 166–194. Dorit Aharonov et al. “The power of quantum systems on a line”. Commun. Math. Phys. 287 (1 2009). arXiv:0705.4077v2 [quant-ph], p. 41. M. Aizenman, ed. Open Problems in Mathematical Physics. https://web.math.princeton.edu/~aizenman/OpenProblems.iamp/.1998-1999. P.W. Anderson. “Resonating valence bonds: a new kind of insulator?”: Mat. Res. Bull. 8 (1973), pp. 153–160. L. Balents. “Spin liquids in frustrated magnets”. Nature 464 (2010), pp. 199–208. Jon Barwise, ed. Handbook of mathematical logic. Elsevier, 1977. Charles H. Bennett. “Logical reversibility of computation”. IBM J. Res. Develop. 17 (1973), p. 525. R. Berger. “The undecidability of the domino problem”. Mem. Amer. Math. Soc. 66 (1966), pp. 1–72. Lenore Blum and Steve Smale. “The Gödel Incompleteness Theorem and Decidability over a Ring”. English. From Topology to Computation: Proceedings of the Smalefest. Ed. by MorrisW. Hirsch, JerroldE. Marsden, and Michael Shub. Springer US, 1993, pp. 321–339. isbn: 978-1-4612-7648-7. doi: 10.1007/978-1-4612-2740-3_32. url: http://dx.doi.org/10.1007/978-1-4612-2740-3_32. Ethan Bernstein and Umesh Vazirani. “Quantum complexity theory”. SIAM Journal on Computing 26.5 (1997), p. 1411. url: \url{www.cs.berkeley.edu/~vazirani/pubs/bv.ps}. E. Farhi et al. “Quantum computation by adiabatic evolution”. arXiv:quant-ph/0001106. 2000. Richard Feynman. “Quantum mechanical computers”. Optics News 11 (1985), p. 11. Carlos Fernández-González et al. “Frustration free gapless Hamiltonians for Matrix Product States”. arXiv:1210.6613 (2012). Daniel Gottesman and Sandy Irani. The quantum and classical complexity of translationally invariant tiling and Hamiltonian problems. arXiv:0905.2419[quant-ph]. 2009. Mile Gu et al. “More Really is Different”. Physica D 238 (2009), pp. 835–839. F.D.M. Haldane. “Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state”. PRL 50 (1983), p. 1153. T.-H. Han et al. “Fractionalized excitations in the spin-liquid state of a Kagome-lattice antiferromagnet”. Nature 492 (2012), pp. 406–410. M.B. Hastings. “Lieb-Schultz-Mattis in higher dimensions”. Phys. Rev. B 69 (2004), p. 104431. J. Stat. Mech.: Theory and Experiment 2007 (08 2007). Douglas R. Hofstadter. “Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields”. Phys. Rev. B 14 (6 Sept. 1976), pp. 2239–2249. doi:10.1103/PhysRevB.14.2239. url:http://link.aps.org/doi/10.1103/PhysRevB.14.2239. Alexander S. Holevo. “Bound for the quantity of information transmitted by a quantum communication channel”. Problems of Information Transmission 9 (1973), pp. 177–183. Arthur Jaffe and Edward Witten. Quantum Yang-Mills Theory. http://www.claymath.org/sites/default/files/yangmills.pdf.2000. J. Kempe, A. Kitaev, and O. Regev. “The complexity of the Local Hamiltonian problem”. SIAM Journal of Computing 35 (5 2006), p. 1070. Dexter Kozen. Automata and computability. Springer Science & Business Media, 1997. A.Y. Kitaev, A.H. Shen, and M.N. Vyalyi. Classical and Quantum Computation. Vol. 47. AMS, 2002. S. Lloyd. “Quantum-mechanical computers and uncomputability”. PRL 71 (1993), pp. 943–946. E.H. Lieb, T.D. Schultz, and D.C. Mattis. “Two-Dimensional Ising Model as a Soluble Problem of Many Fermions”. Ann. Phys. 16 (1961), p. 407. Z. Landau, U. Vazirani, and T. Vidick. “A polynomial-time algorithm for the ground state of 1D gapped local Hamiltonians”. (2013). arXiv:1307.5143v1. T. Koma M.B. Hastings. “Spectral Gap and Exponential Decay of Correlations”. CMP 265 (2006), pp. 781–804. J. Mi˛ ekisz. “Stable quasiperiodic ground states”. J. Stat. Phys. 88 (1997), pp. 691–711. S. Michalakis and J. Pytel. “Stability of Frustration-Free Hamiltonians”. CMP 322 (2013), pp. 277–302. Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, 2000. Harumichi Nishimura and Masanao Ozawa. “Computational Complexity of Uniform Quantum Circuit Families and Quantum Turing Machines”. Theor. Comput. Sci. 276 (2002), p. 147. eprint: quant-ph/9906095. D. Osadchy and J. E. Avron. “Hofstadter butterfly as quantum phase diagram”. Journal of Mathematical Physics 42.12 (2001), pp. 5665–5671. doi: http : / / dx . doi . org / 10 . 1063 / 1 . 1412464. url: http://scitation.aip.org/content/aip/journal/jmp/42/12/10.1063/1.1412464. R. Oliveira and B. Terhal. “The complexity of quantum spin systems on a two-dimensional square lattice”. QIC 8 (2008). arXiv:0504050[quantph], p. 0900. Marian B. Pour-El and Jonathan I. Richards. Computability in Analysis and Physics. Springer, 1989. Bjorn Poonen. Undecidable Problems: A Sampler. arXiv:1204.0299. 2012. Tibor Rado. “On non-computable functions”. Bell System Technical Journal 41 (1962), pp. 877–884. R. Robinson. “Undecidability and Nonperiodicity for Tilings of the Plane”. Invent. Math. 12 (1971), p. 177. Alan Turing. “On computable numbers, with an application to the Entscheidungsproblem”. Proc. London Math. Soc. 2nd ser. 42 (1936-7). H.Wang. “Proving ttheorem by pattern recognition”. Bell System Tech. J. 40 (1961), pp. 1–41. S. Yan, D. A. Huse, and S. R. White. “Spin-liquid ground state of the S=1/2 Kagome Heisenberg antiferromagnet”. Science 332 (2011), pp. 1173–1176.
Collections