Publication:
Superconducting/magnetic three-state nanodevice for memory and reading applications

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-10
Authors
Valle Granda, Javier del
Gómez, A.
González, E. M.
Osorio, M. R.
Granados, D.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature publishing group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a simple nanodevice that can operate in two modes: i) non-volatile three-state memory and ii) reading device. The nanodevice can retain three well defined states −1, 0 and +1 and can operate in a second mode as a sensor for external magnetic fields. The nanodevice is fabricated with an array of ordered triangular-shaped nanomagnets embedded in a superconducting thin film gown on Si substrates. The device runs based on the combination of superconducting vortex ratchet effect (superconducting film) with the out of plane magnetization (nanomagnets). The input signals are ac currents and the output signal are dc voltages. The memory mode is realized without applying a magnetic field and the nanomagnet stray magnetic fields govern the effect. In the sensor mode an external magnetic field is applied. The main characteristic of this mode is that the output signal is null for a precise value of the external magnetic field that only depends on the fabrication characteristics of the nanodevice.
Description
©Nature publishing group. We thank Spanish MINECO grant FIS2013-45469 and CM grant S2013/MIT-2850 and EU COST Action MP-1201. D.G. acknowledges RYC-2012-09864.
Keywords
Citation
1. Hastings, M. B., Olson Reichhardt, C. J. & Reichhardt, C. Ratchet cellular automata. Phys. Rev. Lett. 90, 247004 (2003). 2. Milošević, M. V., Berdiyorov, G. R. & Peeters, F. M. Fluxonic cellular automata. Appl. Phys. Lett. 91, 212501 (2007). 3. Babic, D. & Bechinger, C. Noise-enhanced performance of ratchet cellular automata. Phys. Rev. Lett. 94, 148303 (2005). 4. Hänggi, P. & Marchesoni, F. Artificial brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009). 5. Villegas, J. E. et al. A superconducting reversible rectifier that controls the motion of magnetic flux quanta. Science 302, 1188–1191 (2003). 6. Bar-Nahum, G. et al. A ratchet mechanism of transcription elongation and its control. Cell 120, 183–193 (2005). 7. Roeling, E. M. et al. Organic electronic ratchets doing work. Nature Mat. 10, 51–55 (2011). 8. Gomez, A., Gilbert, D. A., Gonzalez, E. M., Liu, K. & Vicent, J. L. Control of dissipation in superconducting films by magnetic stray fields. Appl. Phys. Lett. 102, 052601 (2013). 9. Lange, M., Van Bael, M. J., Bruynseraede, Y. & Moshchalkov, V. V. Nanoengineered magnetic-field- induced superconductivity. Phys. Rev. Lett. 90, 197006 (2003). 10. Iavarone, M. et al. Visualizing domain wall and reverse domain superconductivity. Nature Comm. 5, 4766 (2014). 11. Ruiz-Valdepeñas, L. et al. Double percolation effects and fractal behavior in magnetic/superconducting hybrids. New J. Phys. 15, 103025 (2013). 12. Vlasko-Vlasov, V. et al. Guiding superconducting vortices with magnetic domain walls. Phys. Rev. B 77, 134518 (2008). 13. Josephson, B. D. Potential differences in the mixed state of type II superconductors. Phys. Lett. 16, 242–243 (1965). 14. Baert, M., Metlushko, V., Jonckheere, R., Moshchalkov, V. V. & Bruynseraede Y. Composite flux-line lattices stabilized in superconducting films by a regular array of artificial defects. Phys. Rev. Lett. 74, 3269–3272 (1995). 15. Martín, J. I., Vélez, M., Nogues, J. & Schuller, I. K. Flux pinning in a superconductor by an array of submicrometer magnetic dots. Phys. Rev. Lett. 79, 1929– 1932 (1997). 16. Martin, J. I., Velez, M., Hoffmann, A., Schuller, I. K. & Vicent, J. L. Artificially induced reconfiguration of the vortex lattice by arrays of magnetic dots. Phys. Rev. Lett. 83, 1022–1025 (1999). 17. Reichhardt, C., Zimanyi G. T., Scalettar, R. T., Hoffmann, A. & Schuller, I. K. Individual and multiple vortex pinning in systems with periodic pinning arrays. Phys. Rev. B 64, 052503 (2001). 18. Vélez, M. et al. Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mat. 320, 2547–2562 (2008). 19. Rosseel, E. et al. Depinning of caged interstitial vortices in superconducting alpha-WGe films with an antidot lattice. Phys. Rev. B 53, R2983–R2986 (1996). 20. Gomez, A. et al. Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials. Supercond. Sci. Technol. 26, 085018 (2013).
Collections