Publication:
Development of an affordable typing method for Meyerozyma guilliermondii using microsatellite markers

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-01-09
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Despite previously published methods, there is still a lack of rapid and affordable methods for genotyping the Meyerozyma guilliermondii yeast species. The development of microsatellite markers is a useful genotyping method in several yeast species. Using the Tandem Repeat Finder Software, a total of 19 microsatellite motifs (di-, tri-, and tetra- repetition) were found in silico in seven of the nine scaffolds published so far. Primer pairs were designed for all of them, although only fourwere used in thiswork. Allmicrosatellite amplifications showed size polymorphism, and the results were identical when repeated. The combination of three microsatellite markers (sc15F/R, sc32 F/R and sc72 F/R) produced a different pattern for each of the Type Culture Collection strains of M. guilliermondii used to optimize the method. The three primer pairs can be used in the same PCR reaction,which reduces costs, in tandem with the fluorescent labeling of only the forward primer in each primer pair.Microsatellite typing was applied on 40 more M. guilliermondii strains. The results showed that no pattern is repeated between the different environmental niches. Four M. guilliermondii strains were only amplified with primer pair sc32 F/R, and subsequently identified as Meyerozyma caribbica by Taq I-RFLP of the 5.8S ITS rDNA. Most out-group species gave negative results even for physiologically similarly species such as Debaryomyces hansenii. The microsatellite markers used in this work were stable over time, which enables their use as a traceability tool.
Description
Keywords
Citation
Albertin, W., Panfili, A., Miot-Sertier, C., Goulielmakis, A., Delcamp, A., Salin, F., Lonvaud-Funel, A., Curtin, C., Masneuf-Pomarede, I., 2014. Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level. Food Microbiol. 42, 188–195. Antonangelo, A.T., Alonso, D.P., Ribolla, P.E., Colombi, D., 2013. Microsatellite markerbased assessment of the biodiversity of native bioethanol yeast strains. Yeast 30, 307–317. Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. Chatonnet, P., Dubourdie, D., Boidron, J.-N., Pons, M., 1992. The origin of ethylphenols in wines. J. Sci. Food Agric. 60, 165–178. Coda, R., Rizzello, C.G., Di Cagno, R., Trani, A., Cardinali, G., Gobbetti, M., 2013. Antifungal activity of Meyerozyma guilliermondii: identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread.Food Microbiol. 33, 243–251. Corte, L., Di Cagno, R., Groenewald, M., Roscini, L., Colabella, C., Gobbetti, M., Cardinali, G.,2015.Phenotypic andmolecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiol. 48, 206–215. Deák, T., 2008. Handbook of Food Spoilage Yeasts. 2nd ed. CRC Press, Boca Ratón, Flo, USA. Desnos-Ollivier, M., Ragon, M., Robert, V., Raoux, D., Gantier, J.C., Dromer, F., 2008. Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). J. Clin. Microbiol. 46,3237–3242. Droby, S.,Wisniewski, M.E., Cohen, L., Weiss, B., Touitou, D., Eilam, Y., Chalutz, E., 1997. Influence of CaCl2 on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guilliermondii. Phytopathology 87, 310–315. Fröhlich-Wyder, M.-T., 2003. Yeasts in dairy products. In: Boekhout, T., Robert, V. (Eds.),Yeasts in Food. Woodhead Publishing, pp. 209–237. Hennequin, C., Thierry, A., Richard, G.F., Lecointre, G., Nguyen, H.V., Gaillardin, C., Dujon,B., 2001. Microsatellite typing as a new tool for identification of Saccharomyces cerevisiae strains. J. Clin. Microbiol. 39, 551–559. Korbie, D.J., Mattick, J.S., 2008. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 3, 1452–1456. Kurtzman, C.P., 2006. New species and new combinations in the yeast genera Kregervanrija gen. nov., Saturnispora and Candida. FEMS Yeast Res 6, 288–297. Kurtzman, C.P., 2011. Meyerozyma Kurtzman & M. Suzuki (2010). In: Kurtzman, C.P., Fell, J.W., Boekhout, T.(Eds.), 5th ed. The Yeasts: A Taxonomic Study vol. 2. Elsevier Science, London, UK, pp. 621–624. Kurtzman, C.P., Fell, J.W., 1998. The yeast: a taxonomic study. 4th ed. Elsevier Science, Amsterdam. Kurtzman, C.P., Robnett, C.J., 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73, 331–371. Kurtzman, C.P., Suzuki, M., 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51, 2–14. Kurtzman, C.P., Fell, J.W., Boekhout, T., 2011. The Yeasts: A Taxonomic Study. 5th ed. Elsevier Science, London. Lahlali, R., Hamadi, Y., El Guilli, M., Jijakli, M.H., 2011. Efficacy assessment of Pichia guilliermondii strain Z1, a new biocontrol agent, against citrus blue mould in Morocco under the influence of temperature and relative humidity. Biol. Control 56, 217–224. Lim, S., Notley-McRobb, L., Lim, M., Carter, D.A., 2004. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet. Biol. 41, 1025–1036. Lima, J.R., Gondim, D.M.F., Oliveira, J.T.A., Oliveira, F.S.A., Gonçalves, L.R.B., Viana, F.M.P., 2013. Use of killer yeast in themanagement of postharvest papaya anthracnose. Postharvest Biol. Technol. 83, 58–64. Litt,M., Luty, J.A., 1989. A hypervariablemicrosatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44,397–401. L'Ollivier, C., Labruère, C., Jebrane, A., Bougnoux, M.-E., d'Enfert, C., Bonnin, A., Dalle, F.,2012. Using a multi-locus microsatellite typing method improved phylogeneticdistribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates. Infect. Genet.Evol. 12, 1949–1957. Lõoke, M., Kristjuhan, K., Kristjuhan, A.,2011.Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328. Lopes, C.A., Jofre, V., Sangorrin, M.P., 2009. Spoilage yeasts in Patagonian winemaking: molecular and physiological features of Pichia guilliermondii indigenous isolates.Rev. Argent. Microbiol. 41, 177–184. Loureiro, V., Malfeito-Ferreira, M., 2003. Spoilage yeasts in the wine industry. Int. J. Food Microbiol. 86, 23–50. Martorell, P., Barata, A., Malfeito-Ferreira, M., Fernández-Espinar, M.T., Loureiro, V.,Querol, A., 2006. Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources. Int. J. Food Microbiol. 106, 79–84. Papon, N., Savini, V., Lanoue, A., Simkin, A.J., Creche, J., Giglioli-Guivarc'h, N., Clastre, M., Courdavault, V., Sibirny, A.A., 2013. Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr. Genet. 59, 73–90. Petersson, S., Schnurer, J., 1995. Biocontrol of mold growth in high-moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 61, 1027–1032. Romi,W., Keisam, S., Ahmed, G., Jeyaram, K., 2014. Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol. 14, 52. Rosenberg, N.A., Pritchard, J.K., Weber, J.L., Cann, H.M., Kidd, K.K., Zhivotovsky, L.A.,Feldman, M.W., 2002. Genetic structure of human populations. Science 298,2381–2385. Sardina, M.T., Tortorici, L., Mastrangelo, S., Di Gerlando, R., Tolone, M., Portolano, B., 2015. Application of microsatellite markers as potential tools for traceability of Girgentana goat breed dairy products. Food Res. Int. 74, 115–122. Sayers, E.W., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M.,DiCuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y.,Landsman, D., Lipman, D.J., Madden, T.L.,Maglott, D.R.,Miller, V., Mizrachi, I., Ostell, J., Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Shumway, M., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusova, T.A., Wagner, L., Yaschenko, E., Ye, J., 2009. Databaseresources of the National Center for Biotechnology information. Nucleic AcidsRes. 37, D5–15. Schlötterer, C., 2001. Genealogical inference of closely related species based on microsatellites. Genet. Res. 78, 209–212. Schuelke, M., 2000. An economic method for the fluorescent labeling of PCR fragments.Nat. Biotechnol. 18, 233–234. Schwan, R.F., Wheals, A.E., 2003. Mixed microbial fermentations of chocolate and coffee.In: Boekhout, T., Robert, V. (Eds.), Yeasts in Food. Woodhead Publishing, Cambridge.England (CRC Press. Boca Raton. Flo. USA. 429–449). Shackell, G.H., Mathias, H.C., Cave, V.M., Dodds, K.G., 2005. Evaluation ofmicrosatellites as a potential tool for product tracing of ground beef mixtures. Meat Sci. 70, 337–345. Tóth, G., Gáspári, Z., Jurka, J., 2000.Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981. White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J.,White, T.J. (Eds.), PCR Protocols. Academic Press, San Diego, pp. 315–322. Wrent, P., Rivas, E.M., Peinado, J.M., de Silóniz,M.I., 2010. Strain typing of Zygosaccharomyces yeast species using a single molecularmethod based on polymorphismof the intergenic spacer region (IGS). Int. J. Food Microbiol. 142, 89–96. WrentE.M., Peinado, J.M., de Silóniz,M.I., 2010. Strain typing of Zygosaccharomyces yeast species using a single molecularmethod based on polymorphismof the intergenic spacer region (IGS). Int. J. Food Microbiol. 142, 89–96. Wrent, P., Rivas, E.M., de Prado, E., Peinado, J.M., de Silóniz, M.I., 2015. Assessment of the factors contributing to the growth or spoilage of Meyerozyma guilliermondii in organic yogurt: comparison of methods for strain differentiation. Microorganisms 3, 428. Wszelaki, A.L., Mitcham, E.J., 2003. Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biol. Technol. 27, 255–264. Zhang, H., Richards, K.D., Wilson, S., Lee, S.A., Sheehan, H., Roncoroni, M., Gardner, R.C.,2015. Genetic characterization of strains of Saccharomyces uvarum from NewZealand wineries. Food Microbiol. 46, 92–99. Zhao, Y., Tu, K., Shao, X.F., Jing,W., Yang, J.L., Su, Z.P., 2008. Biological control of the postharvest pathogens Alternaria solani, Rhizopus stolonifer, and Botrytis cinerea on tomato fruit by Pichia guilliermondii. J. Hortic. Sci. Biotechnol. 83, 132–136. Zou, Y.-Z., Qi, K., Chen, X., Miao, X.-L., Zhong, J.-J., 2010. Favorable effect of very low initial K(L)a value on xylitol production from xylose by a self-isolated strain of Pichia guilliermondii. J. Biosci. Bioeng. 109, 149–152.
Collections