Universidad Complutense de Madrid
E-Prints Complutense

Spatially resolved properties of the grand-design spiral galaxy UGC 9837: a case for high-redshift 2-D observations

Impacto

Downloads

Downloads per month over past year

Viironen, K. and Sánchez, S. F. and Mármol Queraltó, E. and Iglesias Páramo, J. and Mast, D. and Marino, Raffaella Anna and Cristobal Hornillos, D. and Gil de Paz, Armando and van de Ven, G. and Vílchez, J. and Wisotzki, L. (2012) Spatially resolved properties of the grand-design spiral galaxy UGC 9837: a case for high-redshift 2-D observations. Astronomy and astrophysics, 538 . ISSN 0004-6361

[img]
Preview
PDF
845kB

Official URL: http://dx.doi.org/10.1051/0004-6361/201016347


URLURL Type
http://www.aanda.org/Publisher


Abstract

Context. We carry out a detailed 2-D study of the ionised gas in the local universe galaxy UGC 9837. In nearby galaxies, like the galaxy in question here, the spatial distribution of the physical properties can be studied in detail, providing benchmarks for galaxy formation models. Aims. Our aim is to derive detailed and spatially resolved physical properties of the ionised gas of UGC 9837. In addition, we derive an integrated spectrum of the galaxy and study how varying spatial coverage affects the derived integrated properties. We also study how the same properties would be seen if the galaxy was placed at a higher redshift and observed as part of one of the high-z surveys. Methods. UGC 9837 was observed using the PMAS PPAK integral-field unit. The spectra were reduced and calibrated and the stellar and ionised components separated. Using strong emission line ratios of the ionised gas, the source of ionisation, the dust extinction, the star formation rate, the electron density, and the oxygen abundance derived from a total integrated spectrum, central integrated spectrum, and individual fibre spectra are studied. Finally, the same properties are studied in a spectrum whose spatial resolution is degraded to simulate high-z observations. Results. The spatial distribution of the ionised gas properties is consistent with inside-out growing scenario of galaxies. We also find that lack of spatial coverage would bias the results derived from the integrated spectrum leading, e.g., to an underestimation of ionisation and overestimation of metallicity, if only the centre of the galaxy was covered by the spectrum. Our simulation of high-z observations shows that part of the spatial information, such as dust and SFR distribution would be lost, while shallower gradients in metallicity and ionisation strength would be detected.


Item Type:Article
Additional Information:

© ESO, 2012. We thank the Viabilidad, Diseño, Acceso y Mejora funding programme, ICTS-2009-10, of the Spanish Ministerio de Ciencia e Innovación, for the support given to this project. This paper makes use of the Sloan Digital Sky Survey data. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. Finally, we want to thank the anonymous referee for useful comments that helped us to improve the article considerably.

Uncontrolled Keywords:Integral-field spectroscopy; Potsdam multiaperture spectrophotometer; Nearby galaxies; Abundance gradient; Starburst galaxies; Star-formation; HII-regions; Milky-way; PPAK; I.
Subjects:Sciences > Physics > Astrophysics
Sciences > Physics > Astronomy
ID Code:35208
Deposited On:25 Jan 2016 14:07
Last Modified:10 Dec 2018 15:05

Origin of downloads

Repository Staff Only: item control page