Publication:
Fluctuations in fluids in thermal nonequilibrium states below the convective Rayleigh-Benard instability

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-11-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Starting from the linearized fluctuating Boussinesq equations we derive an expression for the structure factor of fluids in stationary convection-free thermal nonequilibrium. states, taking into account both gravity and finite-size effects. It is demonstrated how the combined effects of gravity and finite size cause the structure factor to go through a maximum value as a function of the wave number q. The appearance of this maximum is associated with a crossover from a q^-4 dependence for larger q to a q^2 dependence for very small q. The relevance of this theoretical result for the interpretation of light scattering and shadowgraph experiments is elucidated. The relationship with studies on various aspects of the problem by other investigators is discussed. The paper thus provides a unified treatment for dealing with fluctuations in fluid layers subjected to a stationary temperature gradient regardless of the sign of the Rayleigh number R, provided that R is smaller than the critical value R_c associated with the appearance of Rayleigh-Benard convection.
Description
© 2001 Elsevier Science B.V The authors acknowledge some valuable discussions with G. Ahlers, D.S. Cannell, T.R. Kirkpatrick, R. Pérez Cordón and M.G. Velarde. The research at the University of Marylandis supportedby the Chemical Sciences, Geosciences andBiosciences Division of the OIce of Basic Energy Sciences of the US Department of Energy under Grant No. DE-FG-02-95ER14509. J.V.S. acknowledges the hospitality of the Departamento deFísica Aplicada I, Universidad Complutense de Madrid, where the manuscript was completed.
Unesco subjects
Keywords
Citation
1.- V. Zaitsev, M. Shliomis Sov. Phys. JETP, 32 (1971), p. 866 2.- R. Graham Phys. Rev. A, 10 (1974), p. 1762 3.- R. Graham, H. Pleiner Phys. Fluids, 18 (1975), p. 130 4.- J.B. Swift, P.C. Hohenberg Phys. Rev. A, 15 (1977), p. 319 5.- M.C. Cross, P.C. Hohenberg Rev. Mod. Phys., 65 (1993), p. 851 6.- T.R. Kirkpatrick, E.G.D. Cohen, J.R. Dorfman Phys. Rev. A, 26 (1982), p. 995 7.- D. Ronis, I. Procaccia Phys. Rev. A, 26 (1982), p. 1812 8.- R. Schmitz, E.G.D. Cohen J. Stat. Phys., 39 (1985), p. 285 9.- B.M. Law, J.V. Sengers J. Stat. Phys., 57 (1989), p. 531 10.- B.M. Law, R.W. Gammon, J.V. Sengers Phys. Rev. Lett., 60 (1988), p. 1554 11.- B.M. Law, P.N. Segrè, R.W. Gammon, J.V. Sengers Phys. Rev. A, 41 (1990), p. 816 12.- P.N. Segrè, R.W. Gammon, J.V. Sengers, B.M. Law Phys. Rev. A, 45 (1992), p. 714 13.- J.V. Sengers, J.M. Ortiz de Zárate, in: W. Köhler, S. Wiegand (Eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Springer, Berlin, 2001, in press. 14.- A.L. Garcı́a, M. Malek Mansour, G.C. Lie, E. Clementi J. Stat. Phys., 47 (1987), p. 209 15.- J.M. Rubı́, A. Dı́az-Guilera, L. Torner Physica A, 141 (1987), p. 220 16.- C.Z.-W Liu, I. Oppenheim J. Stat. Phys., 86 (1997), p. 179 17.- A.L. Garcı́a, G. Sonnino, M. Malek Mansour J. Stat. Phys., 90 (1998), p. 1489 18.- M. Malek Mansour, M. Mareschal, G. Sonnino, E. Kestemont M. Mareschal, B. Holian (Eds.), Microscopic Simulations of Complex Hydrodynamic Phenomena, Plenum, London (1992), p. 87 19.- A. Suárez, J.P. Boon, P. Grosfils Phys. Rev. E, 54 (1996), p. 1208 20.- P.N. Segrè, R. Schmitz, J.V. Sengers Physica A, 195 (1993), p. 31 21.- P.N. Segrè, J.V. Sengers Physica A, 198 (1993), p. 46 22.- A. Vailati, M. Giglio Phys. Rev. Lett., 77 (1996), p. 1484 23.- A. Vailati, M. Giglio Prog. Colloid. Polym. Sci., 104 (1997), p. 76 24.- J.M. Ortiz de Zárate, R. Pérez Cordón, J.V. Sengers Physica A, 291 (2001), p. 113 25.- J.M. Ortiz de Zárate, L. Muñoz Redondo, Euro. Phys. J. B 21 (2001) 135. 26.- T.R. Kirkpatrick, E.G.D. Cohen J. Stat. Phys., 33 (1983), p. 639 27.- R. Schmitz, E.G.D. Cohen J. Stat. Phys., 40 (1985), p. 431 28.- M. Wu, G. Ahlers, D.S. Cannell Phys. Rev. Lett., 75 (1995), p. 1743 29.- G. Ahlers, M.C. Cross, P.C. Hohenberg, S. Safran J. Fluid Mech., 110 (1981), p. 297 30.- C.W. Meyer, G. Ahlers, D.S. Cannell Phys. Rev. Lett., 59 (1987), p. 1577 31.- H. van Beijeren, E.G.D. Cohen J. Stat. Phys., 53 (1988), p. 77 32.- G. Ahlers, C.W. Meyer, D.S. Cannell J. Stat. Phys., 54 (1989), p. 1121 33.- C.W. Meyer, G. Ahlers, D.S. Cannell Phys. Rev. A, 44 (1991), p. 2514 34.- I. Rehberg, S. Rasenat, M. de la Torre Juárez, W. Schöpf, F. Hörner, G. Ahlers, H.R. Brand Phys. Rev. Lett., 67 (1991), p. 596 35.- S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford (1961) 36.- P.C. Hohenberg, J.B. Swift Phys. Rev. A, 46 (1992), p. 4773 37.- J. Garcı́a Ojalvo, A. Hernández Machado, J.M. Sancho Phys. Rev. Lett., 71 (1993), p. 1542 38.- D.D. Gray, A. Giorgini Int. J. Heat Mass Transfer, 19 (1976), p. 545 39.- D.J. Tritton Physical Fluid Dynamics (2nd Edition), Oxford University Press, Oxford (1988) 40.- C. Normand, Y. Pomeau, M.G. Velarde Rev. Mod. Phys., 49 (1977), p. 581 41.- F.H. Busse J. Fluid Mech., 30 (1967), p. 625 42.- G. Ahlers J. Fluid Mech., 98 (Part I) (1980), p. 137 43.- E. Bodenschatz, J.R. de Bruyn, G. Ahlers, D.S. Cannell Phys. Rev. Lett., 67 (1991), p. 3078 44.- L.D. Landau, E.M. Lifshitz Fluid Mechanics, Addison-Wesley, Reading, MA (1959) 45.- D. Ronis, I. Procaccia J. Machta, Phys. Rev. A, 22 (1980), p. 714 46.- B.J. Berne, R. Pecora Dynamic Light Scattering, Wiley, New York (1976) 47.- J.V. Sengers, J.M. Ortiz de Zárate, Revista Mexicana de Fı́sica (2001), in press. 48.- P. Manneville Dissipative Structures and Weak Turbulence, Academic Press, San Diego (1990) 49.- I.S. Gradstein, I.M. Ryzhik Table of Integrals, Series, and Products (5th Edition), Academic Press, San Diego (1994) 50.- J.R. de Bruyn, E. Bodenschatz, S.W. Morris, S.P. Trainoff, Y. Hu, D.S. Cannell, G. Ahlers Rev. Sci. Instrum., 67 (1996), p. 2043 51.- E. Bodenschatz, W. Pesch, G. Ahlers Annu. Rev. Fluid Mech., 32 (2000), p. 709 52.- A. Vailati, M. Giglio Nature, 390 (1997), p. 262 53.- D. Brogioli, A. Vailati, M. Giglio Phys. Rev. E, 61 (2000), p. R1 54.- D. Brogioli, A. Vailati, M. Giglio J. Phys.: Condens. Matter, 12 (2000), p. A39 55.- J. Garcı́a Ojalvo, J.M. Sancho Noise in Spatially Extended Systems, Springer, New York (1999) 56.- K. Staliunas, Spatial and temporal spectra of noise driven stripe pattern, available at http://xxx.lanl.gov/abs/cond-mat/0103018, 2001. 57.- W.B. Li, P.N. Segrè, R.W. Gammon, J.V. Sengers Physica A, 204 (1994), p. 399 58.- M.A. Scherer, G. Ahlers, F. Hörner, I. Rehberg Phys. Rev. Lett., 85 (2000), p. 3754 59.- L. Torner, J.M. Rubı́ Phys. Rev. A, 44 (1991), p. 1077 60.- I. Pagonabarraga, J.M. Rubı́, L. Torner Physica A, 173 (1991), p. 111 61.- H.-P. Breuer, F. Petruccione Phys. Lett. A, 185 (1994), p. 385 62.- M. Malek Mansour, J.W. Turner, A.L. Garcı́a J. Stat. Phys., 48 (1987), p. 1157 63.- I. Bena, M. Malek Mansour, F. Baras Phys. Rev. E, 59 (1999), p. 5503
Collections