Publication:
Interval bias in 2AFC detection tasks: sorting out the artifacts

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Proportion correct in two-alternative forcedchoice (2AFC) detection tasks often varies when the stimulus is presented in the first or in the second interval.Reanalysis of published data reveals that these order effects (or interval bias) are strong and prevalent, refuting the standard difference model of signal detection theory. Order effects are commonly regarded as evidence that observers use an off-center criterion under the difference model with bias. We consider an alternative difference model with indecision whereby observers are occasionally undecided and guess with some bias toward one of the response options. Whether or not the data show order effects, the two models fit 2AFC data indistinguishably, but they yield meaningfully different estimates of sensory parameters. Under indeterminacy as to which model governs 2AFC performance, parameter estimates are suspect and potentially misleading. The indeterminacy can be circumvented by modifying the response format so that observers can express indecision when needed. Reanalysis of published data collected in this way lends support to the indecision model. We illustrate alternative approaches to fitting psychometric functions under the indecision model and discuss designs for 2AFC experiments that improve the accuracy of parameter estimates, whether or not order effects are apparent in the data.
Description
Keywords
Citation
Alcalá-Quintana, R., & García-Pérez, M. A. (2011). A model for thetime-order error in contrast discrimination. Quarterly Journal of Experimental Psychology, 64, 1221–1248. doi:10.1080/17470218.2010.540018 Armstrong, L., & Marks, L. E. (1997). Differential effects of stimulus context on perceived length: Implications for the horizontal– vertical illusion. Perception & Psychophysics, 59, 1200–1213. Fechner, G. T. (1966). Elements of psychophysics. New York: Holt. (Original work published 1860). García-Pérez, M. A. (2000). Optimal setups for forced-choice staircases with fixed step sizes. Spatial Vision, 13, 431–448. doi:10.1163/156856800741306 García-Pérez, M. A. (2002). Properties of some variants of adaptive staircases with fixed step sizes. Spatial Vision, 15, 303–321. doi:10.1163/15685680260174056 García-Pérez, M. A., & Alcalá-Quintana, R. (2005). Sampling plans for fitting the psychometric function. Spanish Journal of Psychology, 8, 256–289 Retrieved from http://www.ucm.es/info/Psi/docs/journal/v8_n2_2005/art256.pdf García-Pérez, M. A., & Alcalá-Quintana, R. (2007). The transducer model for contrast detection and discrimination: Formal relations, implications, and an empirical test. Spatial Vision, 20, 5–43.doi:10.1163/156856807779369724 García-Pérez, M. A., & Alcalá-Quintana, R. (2010a). The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies, 25, 876–898. doi:10.1111/j.174459X.2010.00310.x García-Pérez, M. A., & Alcalá-Quintana, R. (2010b). Reminder and 2AFC tasks provide similar estimates of the difference limen: A reanalysis of data from Lapid, Ulrich, and Rammsayer (2008) and a discussion of Ulrich and Vorberg (2009). Attention, Perception, & Psychophysics, 72, 1155–1178. doi:10.3758/APP.72.4.1155 García-Pérez, M. A., & Alcalá-Quintana, R. (2011). Improving the estimation of psychometric functions in 2AFC discrimination tasks. Frontiers in Psychology: Quantitative Psychology and Measurement, 2(96). doi:10.3389/fpsyg.2011.00096 García-Pérez, M. A., & Alcalá-Quintana, R. (in press). Testing equivalence with repeated measures: Tests of the difference model of two-alternative forced-choice performance. Spanish Journal of Psychology. doi:10.5209/rev_SJOP.2011.v14.n2.48 García-Pérez, M. A., & Núñez-Antón, V. (2004). Small-sample comparisons for goodness-of-fit statistics in one-way multinomials with composite hypotheses. Journal of Applied Statistics, 31, 161–181. doi:10.1080/0266476032000148849 García-Pérez, M. A., & Peli, E. (1999). Imputation of direction of motion in one dimension. Journal of the Optical Society of America A, 16, 1531–1540. doi:10.1364/JOSAA.16.001531 García-Pérez, M. A., & Peli, E. (2001). Luminance artifacts of cathode-ray tube displays for vision research. Spatial Vision, 14, 201–215. doi:10.1163/156856801300202931 García-Pérez, M. A., & Sierra-Vázquez, V. (1996). Do channels shift their tuning towards lower spatial frequencies in the periphery? Vision Research, 36, 3339–3372. doi:10.1016/0042-6989(96)00345-8 Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley. Hellström, Å. (1979). Time errors and differential sensation weighting. Journal of Experimental Psychology: Human Perception and Performance, 5, 460–477. doi:10.1037/0096-1523.5.3.460 Jäkel, F., & Wichmann, F. A. (2006). Spatial four-alternative forcedchoice method is the preferred psychophysical method for naïve observers. Journal of Vision, 6, 1307–1322, Retrieved from http://journalofvision.org/6/11/13/, doi:10.1167/6.11.13 Kaernbach, C. (2001). Adaptive threshold estimation with unforcedchoice tasks. Perception & Psychophysics, 63, 1377–1388. Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Perception & Psychophysics, 63, 1421–1455. Klein, S. A. (2007). A local measure for modeling contrast discrimination: Response to Katkov, Tsodyks and Sagi. Vision Research, 47, 2912–2917. doi:10.1016/j.visres.2007.04.006 Law, C.-T., & Gold, J. I. (2010). Shared mechanisms of perceptual learning and decision making. Topics in Cognitive Science, 2, 226–238. doi:10.1111/j.1756-8765.2009.01044.x
Collections