Publication:
The Raychaudhuri equation in homogeneous cosmologies

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014
Authors
Albareti, F. D.
Cruz Dombriz, Álvaro de la
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work we address the issue of studying the conditions required to guarantee the Focusing Theorem for both null and time like geodesic congruences by using the Raychaudhuri equation. In particular we study the case of Friedmann-Robertson-Walker as well as more general Bianchi Type I spacetimes. The fulfillment of the Focusing Theorem is mandatory in small scales since it accounts for the attractive character of gravity. However, the Focusing Theorem is not satisfied at cosmological scales due to the measured negative deceleration parameter. The study of the conditions needed for congruences convergence is not only relevant at the fundamental level but also to derive the viability conditions to be imposed on extended theories of gravity describing the different expansion regimes of the universe. We illustrate this idea for f (R) gravity theories.
Description
© 2014 IOP Publishing Ltd and Sissa Medialab srl. This work has been supported by MICINN (Spain) projects numbers FIS2011-23000, FPA2011-27853-C02-01, FPA2011-27853-C02-01, UCM-BSCH GR58/08 910309 and Consolider-Ingenio MULTIDARK CSD2009-00064. F.D.A. acknowledges financial support from the UAM+CSIC Campus of International Excellence (Spain). A.d.l.C.D. thanks the financial support from ACGC University of Cape Town and IEEC-ICE Barcelona in 2013 as well as the hospitality of Kavli Institute for Theoretical Physics China (KITPC) during the preparation of this manuscript.
Unesco subjects
Keywords
Citation
[1] S. Kar and S. SenGupta, The Raychaudhuri equations: A Brief review, Pramana 69 (2007) 49 [gr-qc/0611123] [INSPIRE]. [2] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE]. [3] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of and _ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE]. [4] Supernova Search Team collaboration, J.L. Tonry et al., Cosmological results from high-z supernovae, Astrophys. J. 594 (2003) 1 [astro-ph/0305008] [INSPIRE]. [5] F.D. Albareti, J.A.R. Cembranos and A. de la Cruz-Dombriz, Focusing of geodesic congruences in an accelerated expanding Universe, JCAP 12 (2012) 020 [arXiv:1208.4201] [INSPIRE]. [6] A. Dobado and A.L. Maroto, Some consequences of the e_ective low-energy Lagrangian for gravity, Phys. Lett. B 316 (1993) 250 [Erratum ibid. B 321 (1994) 435] [hep-ph/9309221] [INSPIRE]. [7] S.-'i. Nojiri and S.D. Odintsov, Introduction to modi_ed gravity and gravitational alternative for dark energy, eConf C 0602061 (2006) 06 [Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115] [hep-th/0601213] [INSPIRE] [INSPIRE]. [8] S.-'i. Nojiri and S.D. Odintsov, Uni_ed cosmic history in modi_ed gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE]. [9] S. Capozziello and M. Francaviglia, Extended Theories of Gravity and their Cosmological and Astrophysical Applications, Gen. Rel. Grav. 40 (2008) 357 [arXiv:0706.1146] [INSPIRE]. [10] T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE]. [11] F.S.N. Lobo, The Dark side of gravity: Modified theories of gravity, in Dark Energy-Current Advances and Ideas, Research Signpost (2009), pg. 173 [ISBN: 978-81-308-0341-8] [arXiv:0807.1640] [INSPIRE]. [12] S. Capozziello and V. Faraoni, Beyond Einstein Gravity, Fundamental Theories of Physics Vol. 170, Springer Ed., Dordrecht (2011). [13] C. Lanczos, Elektromagnetismus als natrliche Eigenschaft der Riemannschen Geometrie, Z. Phys. 73 (1932) 147. [14] C. Lanczos, A Remarkable property of the Riemann-Christoffel tensor in four dimensions, Annals Math. 39 (1938) 842 [INSPIRE]. [15] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE]. [16] G. Cognola, E. Elizalde, S.-'i. Nojiri, S.D. Odintsov and S. Zerbini, Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem, Phys. Rev. D 73 (2006) 084007 [hep-th/0601008] [INSPIRE]. [17] S.-'i. Nojiri and S.D. Odintsov, Modi_ed Gauss-Bonnet theory as gravitational alternative for dark energy, Phys. Lett. B 631 (2005) 1 [hep-th/0508049] [INSPIRE]. [18] S.-'i. Nojiri and S.D. Odintsov, Modi_ed gravity with negative and positive powers of the curvature: Unification of the ination and of the cosmic acceleration, Phys. Rev. D 68 (2003) 123512 [hep-th/0307288] [INSPIRE]. [19] E. Elizalde, R. Myrzakulov, V.V. Obukhov and D. Sáez-Gómez, _CDM epoch reconstruction from F(R;G) and modified Gauss-Bonnet gravities, Class. Quant. Grav. 27 (2010) 095007 [arXiv:1001.3636] [INSPIRE]. [20] R. Myrzakulov, D. Sáez-Gómez and A. Tureanu, On the _CDM Universe in f(G) gravity, Gen. Rel. Grav. 43 (2011) 1671 [arXiv:1009.0902] [INSPIRE]. [21] A. de la Cruz-Dombriz and D. S_aez-G_omez, On the stability of the cosmological solutions in f(R;G) gravity, Class. Quant. Grav. 29 (2012) 245014 [arXiv:1112.4481] [INSPIRE]. [22] J. Alcaraz, J.A.R. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane uctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE]. [23] L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE]. [24] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE]. [25] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane uctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE]. [26] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Phenomenological implications of brane world scenarios with low tension, AIP Conf. Proc. 670 (2003) 235 [hep-ph/0301009] [INSPIRE]. [27] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE]. [28] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE]. [29] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE]. [30] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE]. [31] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Some model-independent phenomenological consequences of exible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE]. [32] J.A.R. Cembranos, V. Gammaldi and A.L. Maroto, Possible dark matter origin of the gamma ray emission from the galactic center observed by HESS, Phys. Rev. D 86 (2012) 103506 [arXiv:1204.0655] [INSPIRE]. [33] J.A.R. Cembranos, V. Gammaldi and A.L. Maroto, Spectral Study of the HESS J1745-290 Gamma-Ray Source as Dark Matter Signal, JCAP 04 (2013) 051 [arXiv:1302.6871] [INSPIRE]. [34] J.A.R. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi, R.A. Lineros and A.L. Maroto, Reliability of Monte Carlo event generators for gamma ray dark matter searches, JHEP 09 (2013) 077 [arXiv:1305.2124] [INSPIRE]. [35] J.A.R. Cembranos, R.L. Delgado and A. Dobado, Brane-Worlds at the LHC: Branons and KK-gravitons, Phys. Rev. D 88 (2013) 075021 [arXiv:1306.4900] [INSPIRE]. [36] G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE]. [37] J.D. Bekenstein, The Relation between physical and gravitational geometry, Phys. Rev. D 48 (1993) 3641 [gr-qc/9211017] [INSPIRE]. [38] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE]. [39] J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, Is the CMB Cold Spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE]. [40] J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R.A. Lineros and A.L. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936][INSPIRE]. [41] J.A.R. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE]. [42] J.A.R. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi and A.L. Maroto, Detection of branon dark matter with gamma ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE]. [43] J.A.R. Cembranos and L.E. Strigari, Di_use MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE]. [44] M. Zumalacarregui, T.S. Koivisto, D.F. Mota and P. Ruiz-Lapuente, Disformal Scalar Fields and the Dark Sector of the Universe, JCAP 05 (2010) 038 [arXiv:1004.2684] [INSPIRE]. [45] T.S. Koivisto, D.F. Mota and M. Zumalacarregui, Screening Modifications of Gravity through Disformally Coupled Fields, Phys. Rev. Lett. 109 (2012) 241102 [arXiv:1205.3167] [INSPIRE]. [46] M. Zumalacarregui, T.S. Koivisto and D.F. Mota, DBI Galileons in the Einstein Frame: Local Gravity and Cosmology, Phys. Rev. D 87 (2013) 083010 [arXiv:1210.8016] [INSPIRE]. [47] V.A. Kostelecky and S. Samuel, Spontaneous Breaking of Lorentz Symmetry in String Theory, Phys. Rev. D 39 (1989) 683 [INSPIRE]. [48] D. Colladay and V.A. Kostelecky, CPT violation and the standard model, Phys. Rev. D 55 (1997) 6760 [hep-ph/9703464] [INSPIRE]. [49] J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Microscopic recoil model for light-cone fluctuations in quantum gravity, Phys. Rev. D 61 (1999) 027503 [gr-qc/9906029] [INSPIRE]. [50] J. Alfaro, H.A. Morales-Tecotl and L.F. Urrutia, Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84 (2000) 2318 [gr-qc/9909079] [INSPIRE]. [51] G. Amelino-Camelia, Doubly special relativity, Nature 418 (2002) 34 [gr-qc/0207049][INSPIRE]. [52] J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE]. [53] J.A.R. Cembranos, A. Rajaraman and F. Takayama, CPT violation in the top sector, hep-ph/0512020 [INSPIRE]. [54] J.A.R. Cembranos, A. Rajaraman and F. Takayama, Searching for CPT violation in t_t production, Europhys. Lett. 82 (2008) 21001 [hep-ph/0609244] [INSPIRE]. [55] S. Ghosh and P. Pal, Deformed Special Relativity and Deformed Symmetries in a Canonical Framework, Phys. Rev. D 75 (2007) 105021 [hep-th/0702159] [INSPIRE]. [56] D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress Toward a Theory of Supergravity, Phys. Rev. D 13 (1976) 3214 [INSPIRE]. [57] S. Deser and B. Zumino, Consistent Supergravity, Phys. Lett. B 62 (1976) 335 [INSPIRE]. [58] E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE]. [59] L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE]. [60] N. Ohta, Grand Uni_ed Theories Based on Local Supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE]. [61] L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE]. [62] H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE]. [63] J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE]. [64] J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, Gravitino and axino superWIMPs, AIP Conf. Proc. 903 (2007) 591 [hep-ph/0701011] [INSPIRE]. [65] J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Resolving Cosmic Gamma Ray Anomalies with Dark Matter Decaying Now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE]. [66] J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Exotic Collider Signals from the Complete Phase Diagram of Minimal Universal Extra Dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE]. [67] M.R. Garousi, Ricci curvature corrections to type-II supergravity, Phys. Rev. D 87 (2013) 025006 [arXiv:1210.4379] [INSPIRE]. [68] T. Biswas, T. Koivisto and A. Mazumdar, Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, JCAP 11 (2010) 008 [arXiv:1005.0590] [INSPIRE]. [69] T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermal Duality and Hagedorn Transition from p-adic Strings, Phys. Rev. Lett. 104 (2010) 021601 [arXiv:0910.2274] [INSPIRE]. [70] T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermodynamics and Cosmological Constant of Non-Local Field Theories from p-Adic Strings, JHEP 10 (2010) 048 [arXiv:1005.0430] [INSPIRE]. [71] T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Finite Temperature Solitons in Non-Local Field Theories from p-Adic Strings, Phys. Rev. D 82 (2010) 085028 [arXiv:1006.4098] [INSPIRE]. [72] T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE]. [73] T. Biswas, A.S. Koshelev, A. Mazumdar and S.Y. Vernov, Stable bounce and ination in non-local higher derivative cosmology, JCAP 08 (2012) 024 [arXiv:1206.6374] [INSPIRE]. [74] S. Deser and R.P. Woodard, Observational Viability and Stability of Nonlocal Cosmology, JCAP 11 (2013) 036 [arXiv:1307.6639] [INSPIRE]. [75] C. Deffayet and R.P. Woodard, Reconstructing the Distortion Function for Nonlocal Cosmology, JCAP 08 (2009) 023 [arXiv:0904.0961] [INSPIRE]. [76] A.O. Barvinsky, Serendipitous discoveries in nonlocal gravity theory, Phys. Rev. D 85 (2012) 104018 [arXiv:1112.4340] [INSPIRE]. [77] A.O. Barvinsky, Dark energy and dark matter from nonlocal ghost-free gravity theory, Phys. Lett. B 710 (2012) 12 [arXiv:1107.1463] [INSPIRE]. [78] A.O. Barvinsky and Y.V. Gusev, New representation of the nonlocal ghost-free gravity theory, Phys. Part. Nucl. 44 (2013) 213 [arXiv:1209.3062] [INSPIRE]. [79] C. Brans and R.H. Dicke, Mach's principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [INSPIRE]. [80] C.H. Brans, Mach's Principle and a Relativistic Theory of Gravitation. II, Phys. Rev. 125 (1962) 2194 [INSPIRE]. [81] J. García-Bellido, A.D. Linde and D.A. Linde, Fluctuations of the gravitational constant in the inationary Brans-Dicke cosmology, Phys. Rev. D 50 (1994) 730 [astro-ph/9312039] [INSPIRE]. [82] J.A.R. Cembranos, K.A. Olive, M. Peloso and J.-P. Uzan, Quantum Corrections to the Cosmological Evolution of Conformally Coupled Fields, JCAP 07 (2009) 025 [arXiv:0905.1989] [INSPIRE]. [83] J.A.R. Cembranos, A. de la Cruz Dombriz and L.O. Garcia, Complete density perturbations in the Jordan-Fierz-Brans-Dicke theory, Phys. Rev. D 88 (2013) 123507 [arXiv:1307.0521] [INSPIRE]. [84] L.H. Ford, Ination driven by a vector _eld, Phys. Rev. D 40 (1989) 967 [INSPIRE]. [85] J. Beltrán Jiménez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008) 063005 [arXiv:0801.1486] [INSPIRE]. [86] J. Beltrán Jiménez and A.L. Maroto, Cosmological electromagnetic fields and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [INSPIRE]. [87] J. Beltrán Jiménez and A.L. Maroto, Cosmological evolution in vector-tensor theories of gravity, Phys. Rev. D 80 (2009) 063512 [arXiv:0905.1245] [INSPIRE]. [88] T. Koivisto and D.F. Mota, Vector Field Models of Ination and Dark Energy, JCAP 08 (2008) 021 [arXiv:0805.4229] [INSPIRE]. [89] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J.N. Jareno, Isotropy theorem for cosmological vector fields, Phys. Rev. D 86 (2012) 021301 [arXiv:1203.6221] [INSPIRE]. [90] J.A.R. Cembranos, A.L. Maroto and S.J.N. Jareno, Isotropy theorem for cosmological Yang-Mills theories, Phys. Rev. D 87 (2013) 043523 [arXiv:1212.3201] [INSPIRE]. [91] K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE]. [92] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE]. [93] A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity, JETP Lett. 86 (2007) 157 [arXiv:0706.2041] [INSPIRE]. [94] M.B. Mijíc, M.S. Morris and W.-M. Suen, The R2 Cosmology: Ination Without a Phase Transition, Phys. Rev. D 34 (1986) 2934 [INSPIRE]. [95] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [INSPIRE]. [96] J.A.R. Cembranos, The Newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 064029 [gr-qc/0507039] [INSPIRE]. [97] J.A.R. Cembranos, Dark Matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE]. [98] N. Goheer, J. Larena and P.K.S. Dunsby, Power-law cosmic expansion in f(R) gravity models, Phys. Rev. D 80 (2009) 061301 [arXiv:0906.3860] [INSPIRE]. [99] S. Carloni, P.K.S. Dunsby and A. Troisi, The Evolution of density perturbations in f(R) gravity, Phys. Rev. D 77 (2008) 024024 [arXiv:0707.0106] [INSPIRE]. [100] K.N. Ananda, S. Carloni and P.K.S. Dunsby, The Evolution of cosmological gravitational waves in f(R) gravity, Phys. Rev. D 77 (2008) 024033 [arXiv:0708.2258] [INSPIRE]. [101] K.N. Ananda, S. Carloni and P.K.S. Dunsby, A detailed analysis of structure growth in f(R) theories of gravity, Class. Quant. Grav. 26 (2009) 235018 [arXiv:0809.3673] [INSPIRE]. [102] B. Montes Nuñnez, J.A.R. Cembranos and A. de la Cruz-Dombriz, On the collapse in fourth order gravities, AIP Conf. Proc. 1458 (2011) 491 [arXiv:1210.7968] [INSPIRE]. [103] J.A.R. Cembranos, A. de la Cruz-Dombriz and P. Jimeno Romero, Kerr-Newman black holes in f(R) theories, Int. J. Geom. Meth. Mod. Phys. 11 (2014) 1450001 [arXiv:1109.4519][INSPIRE]. [104] A. Abebe, M. Abdelwahab, A. de la Cruz-Dombriz and P.K.S. Dunsby, Covariant gauge-invariant perturbations in multiuid f(R) gravity, Class. Quant. Grav. 29 (2012) 135011 [arXiv:1110.1191] [INSPIRE]. [105] A. Abebe, A. de la Cruz-Dombriz and P.K.S. Dunsby, Large Scale Structure Constraints for a Class of f(R) Theories of Gravity, Phys. Rev. D 88 (2013) 044050 [arXiv:1304.3462][INSPIRE]. [106] A. de la Cruz-Dombriz, P.K.S. Dunsby, V.C. Busti and S. Kandhai, On tidal forces in f(R) theories of gravity, arXiv:1312.2022 [INSPIRE]. [107] R.M. Wald, General Relativity, University of Chicago Press, Chicago U.S.A. (1984). [108] A. Raychaudhuri, Relativistic cosmology. 1., Phys. Rev. 98 (1955) 1123 [INSPIRE]. [109] R.K. Sachs, Gravitational waves in general relativity. 6. The outgoing radiation condition, Proc. Roy. Soc. Lond. A 264 (1961) 309 [INSPIRE]. [110] L.P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton New Jersey U.S.A. (1926). [111] F.D. Albareti, J.A.R. Cembranos, A. de la Cruz-Dombriz and A. Dobado, On the non-attractive character of gravity in f(R) theories, JCAP 07 (2013) 009 [arXiv:1212.4781][INSPIRE]. [112] P. Martín-Moruno and M. Visser, Semiclassical energy conditions for quantum vacuum states, JHEP 09 (2013) 050 [arXiv:1306.2076] [INSPIRE]. [113] P. Martín-Moruno and M. Visser, Classical and quantum ux energy conditions for quantum vacuum states, Phys. Rev. D 88 (2013) 061701 [arXiv:1305.1993] [INSPIRE]. [114] S.W. Hawking and G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge U.K. (1973). [115] L. Pogosian and A. Silvestri, The pattern of growth in viable f(R) cosmologies, Phys. Rev. D77 (2008) 023503 [Erratum ibid. D 81 (2010) 049901] [arXiv:0709.0296] [INSPIRE]. [116] W. Hu and I. Sawicki, Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D 76 (2007) 064004 [arXiv:0705.1158] [INSPIRE]. [117] S.-'i. Nojiri and S.D. Odintsov, Uni_ed cosmic history in modi_ed gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59 [arXiv:1011.0544] [INSPIRE]. [118] S.-'i. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C 0602061 (2006) 06 [Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115][hep-th/0601213] [INSPIRE] [INSPIRE]. [119] S. Tsujikawa, Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints, Phys. Rev. D 77 (2008) 023507 [arXiv:0709.1391] [INSPIRE]. [120] J.A.R. Cembranos, A. de la Cruz-Dombriz and B. Montes Nuñnez, Gravitational collapse in f(R) theories, JCAP 04 (2012) 021 [arXiv:1201.1289] [INSPIRE]. [121] A. de la Cruz-Dombriz and A. Dobado, A f(R) gravity without cosmological constant, Phys. Rev. D 74 (2006) 087501 [gr-qc/0607118] [INSPIRE]. [122] P.K.S. Dunsby, E. Elizalde, R. Goswami, S. Odintsov and D. Sáez-Gómez, On the _CDM Universe in f(R) gravity, Phys. Rev. D 82 (2010) 023519 [arXiv:1005.2205][INSPIRE]. [123] S. Capozziello and V. Faraoni, Beyond Einstein Gravity, Fundamental Theories of Physics Volume 170, Springer, Dordrecht The Netherlands (2011). [124] D. Sáez-Gómez, On Friedmann-Lemaître-Robertson-Walker cosmologies in non-standard gravity, Ph.D. Thesis, University of Barcelona (2011) [arXiv:1104.0813][INSPIRE]. [125] N. Goheer, J. Larena and P.K.S. Dunsby, Power-law cosmic expansion in f(R) gravity models, Phys. Rev. D 80 (2009) 061301 [arXiv:0906.3860] [INSPIRE]. [126] S. Carloni, P.K.S. Dunsby, S. Capozziello and A. Troisi, Cosmological dynamics of Rn gravity, Class. Quant. Grav. 22 (2005) 4839 [gr-qc/0410046] [INSPIRE]. [127] S. Carloni and P.K.S. Dunsby, A Dynamical system approach to higher order gravity, J. Phys. A 40 (2007) 6919 [gr-qc/0611122] [INSPIRE]. [128] S. Carloni, A. Troisi and P.K.S. Dunsby, Some remarks on the dynamical systems approach to fourth order gravity, Gen. Rel. Grav. 41 (2009) 1757 [arXiv:0706.0452] [INSPIRE]. [129] N. Goheer, J.A. Leach and P.K.S. Dunsby, Compactifying the state space for alternative theories of gravity, Class. Quant. Grav. 25 (2008) 035013 [arXiv:0710.0819] [INSPIRE]. [130] N. Goheer, J.A. Leach and P.K.S. Dunsby, Dynamical systems analysis of anisotropic cosmologies in Rn-gravity, Class. Quant. Grav. 24 (2007) 5689 [arXiv:0710.0814] [INSPIRE]. [131] J.A. Leach, S. Carloni and P.K.S. Dunsby, Shear dynamics in Bianchi I cosmologies with Rn-gravity, Class. Quant. Grav. 23 (2006) 4915 [gr-qc/0603012] [INSPIRE]. [132] M. Abdelwahab, S. Carloni and P.K.S. Dunsby, Cosmological dynamics of exponential gravity, Class. Quant. Grav. 25 (2008) 135002 [arXiv:0706.1375] [INSPIRE]. [133] M. Abdelwahab, R. Goswami and P.K.S. Dunsby, Cosmological dynamics of fourth order gravity: A compact view, Phys. Rev. D 85 (2012) 083511 [arXiv:1111.0171] [INSPIRE]. [134] B. Jain, V. Vikram and J. Sakstein, Astrophysical Tests of Modi_ed Gravity: Constraints from Distance Indicators in the Nearby Universe, Astrophys. J. 779 (2013) 39 [arXiv:1204.6044][INSPIRE]. [135] T. Clifton and J.D. Barrow, The Power of general relativity, Phys. Rev. D 72 (2005) 103005 [gr-qc/0509059] [INSPIRE]. [136] S. Carloni, P.K.S. Dunsby and A. Troisi, The Evolution of density perturbations in f(R) gravity, Phys. Rev. D 77 (2008) 024024 [arXiv:0707.0106] [INSPIRE]. [137] K.N. Ananda, S. Carloni and P.K.S. Dunsby, The Evolution of cosmological gravitational waves in f(R) gravity, Phys. Rev. D 77 (2008) 024033 [arXiv:0708.2258] [INSPIRE]. [138] K.N. Ananda, S. Carloni and P.K.S. Dunsby, A detailed analysis of structure growth in f(R) theories of gravity, Class. Quant. Grav. 26 (2009) 235018 [arXiv:0809.3673] [INSPIRE]. [139] A. Abebe, M. Abdelwahab, A. de la Cruz-Dombriz and P.K.S. Dunsby, Covariant gauge-invariant perturbations in multiuid f(R) gravity, Class. Quant. Grav. 29 (2012) 135011 [arXiv:1110.1191] [INSPIRE]. [140] A. Abebe, A. de la Cruz-Dombriz and P.K.S. Dunsby, Large Scale Structure Constraints for a Class of f(R) Theories of Gravity, Phys. Rev. D 88 (2013) 044050 [arXiv:1304.3462][INSPIRE].
Collections