Publication:
Gravitational collapse in f(R) theories

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-04
Authors
Cruz Dombriz, Álvaro de la
Montes Núñez, Bárbara
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the gravitational collapse in modified gravitational theories. In particular, we analyze a general f(R) model with uniformly collapsing cloud of self-gravitating dust particles. This analysis shares analogies with the formation of large-scale structures in the early Universe and with the formation of stars in a molecular cloud experiencing gravitational collapse. In the same way, this investigation can be used as a first approximation to the modification that stellar objects can suffer in these modified theories of gravity. We study concrete examples, and find that the analysis of gravitational collapse is an important tool to constrain models that present late-time cosmological acceleration.
Description
© 2012 IOP Publishing Ltd and Sissa Medialab srl. This work has been supported by MICINN (Spain) project number FPA 2008-00592 and Consolider-Ingenio MULTIDARK CSD2009-00064. AdlCD also acknowledges financial support from NRF and URC research fellowships (South Africa) and kind hospitality of UCM, Madrid while elaborating part of the manuscript.
Unesco subjects
Keywords
Citation
[1] S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, U.S.A. (1972). [2] L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE]; J.L. Feng, A. Rajaraman and F. Takayama, Graviton cosmology in universal extra dimensions, Phys. Rev. D 68 (2003) 085018 [hep-ph/0307375] [INSPIRE]; Probing gravitational interactions of elementary particles, Int. J. Mod. Phys. D 13 (2004) 2355 [hep-th/0405248] [INSPIRE]; J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE]; J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Exotic collider signals from the complete phase diagram of minimal universal extra dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE]; J.A.R. Cembranos, J.H. Montes de Oca Y. and L. Prado, Dark matter and Higgs sector, J. Phys. Conf. Ser. 315 (2011) 012012 [arXiv:1008.4435] [INSPIRE]; J.A.R. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE]. [3] H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE]; J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE]; K. Griest and M. Kamionkowski, Supersymmetric dark matter, Phys. Rept. 333 (2000) 167 [INSPIRE]; J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE]; J.A.R. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE]; Phenomenological implications of brane world scenarios with low tension, AIP Conf. Proc. 670 (2003) 235 [hep-ph/0301009] [INSPIRE]; Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE]; Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE]; Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE]; A.L. Maroto, The nature of branon dark matter, Phys. Rev. D 69 (2004) 043509 [hep-ph/0310272] [INSPIRE]; A.L. Maroto, Brane oscillations and the cosmic coincidence problem, Phys. Rev. D 69 (2004) 101304 [hep-ph/0402278] [INSPIRE]; A. Dobado and A.L. Maroto, The dynamics of the Goldstone bosons on the brane, Nucl. Phys. B 592 (2001) 203 [hep-ph/0007100] [INSPIRE]; J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, Is the CMB cold spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE]. [4] J.A.R. Cembranos and L.E. Strigari, Diffuse MeV -rays and galactic 511 keV line from decaying WIMP dark matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630][INSPIRE]; J.A.R. Cembranos, J.L. Feng and L.E. Strigari, Resolving cosmic ray anomalies with dark matter decaying now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE]; J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936][INSPIRE]; Fitting formulae for photon spectra from WIMP annihilation, J. Phys. Conf. Ser. 314 (2011) 012063 [arXiv:1012.4473] [INSPIRE]; Photon spectra from quark generation by WIMPs, AIP Conf. Proc. 1343 (2011) 595 [arXiv:1011.2137] [INSPIRE]; J.A.R. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi and A. Maroto, Detection of branon dark matter with ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE]. [5] J. Alcaraz, J.A.R. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE]; L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE]; J.A.R. Cembranos, A. Rajaraman and F. Takayama, Searching for CPT violation in t¯t production, Europhys. Lett. 82 (2008) 21001 [hep-ph/0609244] [INSPIRE]; J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE]; Some model-independent phenomenological consequences of flexible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE]; Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE]; J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, Gravitino and axino superWIMPs, AIP Conf. Proc. 903 (2007) 591 [hep-ph/0701011] [INSPIRE]. [6] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE]; T. Biswas, J.A.R. Cembranos and J.I. Kapusta, Thermal duality and Hagedorn transition from p-adic strings, Phys. Rev. Lett. 104 (2010) 021601 [arXiv:0910.2274] [INSPIRE]; Thermodynamics and cosmological constant of non-local field theories from p-adic strings, JHEP 10 (2010) 048 [arXiv:1005.0430] [INSPIRE]; Finite temperature solitons in non-local field theories from p-adic strings, Phys. Rev. D 82 (2010) 085028 [arXiv:1006.4098][INSPIRE]; J.A.R. Cembranos, QCD effects in cosmology, AIP Conf. Proc. 1182 (2009) 288 [arXiv:0906.5297] [INSPIRE]; The newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 064029 [gr-qc/0507039] [INSPIRE]; QCD contributions to the thermal history of the early Universe, AIP Conf. Proc. 1343 (2011) 604 [arXiv:1103.5221] [INSPIRE]; J.A.R. Cembranos, K.A. Olive, M. Peloso and J.-P. Uzan, Quantum corrections to the cosmological evolution of conformally coupled fields, JCAP 07 (2009) 025 [arXiv:0905.1989] [INSPIRE]; S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115 [INSPIRE]; J. Beltran Jimenez and A.L. Maroto, A cosmic vector for dark energy, Phys. Rev. D 78 (2008) 063005 [arXiv:0801.1486] [INSPIRE]; Cosmological electromagnetic fields and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [INSPIRE]; Cosmological evolution in vector-tensor theories of gravity, Phys. Rev. D 80 (2009) 063512 [arXiv:0905.1245] [INSPIRE]; Dark energy: the absolute electric potential of the universe, Int. J. Mod. Phys. D 18 (2009) 2243 [arXiv:0905.2589] [INSPIRE]. [7] A. Dobado and A.L. Maroto, Inflatonless inflation, Phys. Rev. D 52 (1995) 1895 [Erratum ibid. D 53 (1996) 2262] [hep-ph/9406409] [INSPIRE]; G. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE]; S.M. Carroll et al., The cosmology of generalized modified gravity models, Phys. Rev. D 71 (2005) 063513 [astro-ph/0410031] [INSPIRE]; J.A.R. Cembranos, The Newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 064029 [gr-qc/0507039] [INSPIRE]; S. Nojiri and S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115 [hep-th/0601213] [INSPIRE]. [8] S. Tsujikawa, Modified gravity models of dark energy, Lect. Notes Phys. 800 (2010) 99 [arXiv:1101.0191][INSPIRE]. [9] A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928][INSPIRE]. [10] A. de la Cruz-Dombriz and A. Dobado, A f(R) gravity without cosmological constant, Phys. Rev. D 74 (2006) 087501 [gr-qc/0607118] [INSPIRE]. [11] T.P. Sotiriou, The Nearly Newtonian regime in non-linear theories of gravity, Gen. Rel. Grav. 38 (2006) 1407 [gr-qc/0507027] [INSPIRE]; O. Mena, J. Santiago and J. Weller, Constraining inverse curvature gravity with supernovae, Phys. Rev. Lett. 96 (2006) 041103 [astro-ph/0510453] [INSPIRE]; V. Faraoni, Solar system experiments do not yet veto modified gravity models, Phys. Rev. D 74 (2006) 023529 [gr-qc/0607016] [INSPIRE]; S. Nojiri and S.D. Odintsov, Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe, Phys. Rev. D 74 (2006) 086005 [hep-th/0608008] [INSPIRE]; A. de la Cruz-Dombriz and D. Saez-Gomez, On the stability of the cosmological solutions in f(R,G) gravity, arXiv:1112.4481 [INSPIRE]; I. Sawicki and W. Hu, Stability of cosmological solution in f(R) models of gravity, Phys. Rev. D 75 (2007) 127502 [astro-ph/0702278] [INSPIRE]; A. de la Cruz Dombriz, Some cosmological and astrophysical aspects of modified gravity theories, Ph.D. thesis, Complutense University of Madrid, Madrid, Spain (2010), arXiv:1004.5052 [INSPIRE]; P.K. Dunsby, E. Elizalde, R. Goswami, S. Odintsov and D.S. Gómez, On the LCDM Universe in f(R) gravity, Phys. Rev. D 82 (2010) 023519 [arXiv:1005.2205] [INSPIRE]; A.M. Nzioki, S. Carloni, R. Goswami and P.K. Dunsby, A new framework for studying spherically symmetric static solutions in f(R) gravity, Phys. Rev. D 81 (2010) 084028 [arXiv:0908.3333] [INSPIRE]; N. Goheer, J. Larena and P.K. Dunsby, Power-law cosmic expansion in f(R) gravity models, Phys. Rev. D 80 (2009) 061301 [arXiv:0906.3860] [INSPIRE]. [12] A. de la Cruz-Dombriz, A. Dobado and A. Maroto, Black holes in f(R) theories, Phys. Rev. D 80 (2009) 124011 [Erratum ibid. D 83 (2011) 029903][arXiv:0907.3872] [INSPIRE]; Black holes in modified gravity theories, J. Phys. Conf. Ser. 229 (2010) 012033 [arXiv:1001.2454] [INSPIRE]; J.A.R. Cembranos, A. de la Cruz-Dombriz and P.J. Romero, Kerr-Newman black holes in f(R) theories, arXiv:1109.4519 [INSPIRE]. [13] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE]; Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of and _ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE]. [14] SDSS collaboration, D.J. Eisenstein et al., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J. 633 (2005) 560 [astro-ph/0501171] [INSPIRE]. [15] WMAP collaboration, D. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [INSPIRE]. [16] E.V. Linder, Cosmic growth history and expansion history, Phys. Rev. D 72 (2005) 043529 [astro-ph/0507263] [INSPIRE]. [17] A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, On the evolution of density perturbations in f(R) theories of gravity, Phys. Rev. D 77 (2008) 123515 [arXiv:0802.2999] [INSPIRE]; A. Abebe, M. Abdelwahab, A. de la Cruz-Dombriz and P.K. Dunsby, Covariant gauge-invariant perturbations in multifluid f(R) gravity, arXiv:1110.1191 [INSPIRE]; S. Carloni, P. Dunsby and A. Troisi, The evolution of density perturbations in f(R) gravity, Phys. Rev. D 77 (2008) 024024 [arXiv:0707.0106] [INSPIRE]. [18] A. de la Cruz-Dombriz, A. Dobado and A. Maroto, Comment on ’Viable singularity-free f(R) gravity without a cosmological constant’, Phys. Rev. Lett. 103 (2009) 179001 [arXiv:0910.1441] [INSPIRE]. [19] M. Sharif and H.R. Kausar, Gravitational perfect fluid collapse in f(R) gravity, Astrophys. Space Sci. 331 (2011) 281 [arXiv:1007.2852] [INSPIRE]. [20] K. Bamba, S. Nojiri and S.D. Odintsov, Time-dependent matter instability and star singularity in f(R) gravity, Phys. Lett. B 698 (2011) 451 [arXiv:1101.2820] [INSPIRE]. [21] E. Arbuzova and A. Dolgov, Explosive phenomena in modified gravity, Phys. Lett. B 700 (2011) 289 [arXiv:1012.1963] [INSPIRE]. [22] E. Santos, Neutron stars in generalized f(R) gravity, arXiv:1104.2140 [INSPIRE]. [23] D.-I. Hwang, B.-H. Lee and D.-H. Yeom, Mass inflation in f(R) gravity: a conjecture on the resolution of the mass inflation singularity, JCAP 12 (2011) 006 [arXiv:1110.0928] [INSPIRE]. [24] A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE]. [25] J.A.R. Cembranos, Dark matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE]; R2 dark matter, J. Phys. Conf. Ser. 315 (2011) 012004 [arXiv:1011.0185] [INSPIRE]. [26] C.P. Berry and J.R. Gair, Linearized f(R) gravity: gravitational radiation and solar system tests, Phys. Rev. D 83 (2011) 104022 [arXiv:1104.0819] [INSPIRE]. [27] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D 70 (2004) 043528 [astro-ph/0306438] [INSPIRE]. [28] A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity, JETP Lett. 86 (2007) 157 [arXiv:0706.2041] [INSPIRE]. [29] http://lambda.gsfc.nasa.gov/product/map/current/params/olcdm sz lens wmap7 bao h0.cfm. [30] R. Foley et al., Discovery and cosmological implications of SPT-CL J2106-5844, the most massive known cluster at z > 1, Astrophys. J. 731 (2011) 86; M. Brodwin et al., SPT-CL J0546-5345: a massive z > 1 galaxy cluster selected via the Sunyaev-Zel’dovich effect with the South Pole Telescope, Astrophys. J. 721 (2010) 90; M. Jee et al., Hubble Space Telescope weak-lensing study of the galaxy cluster XMMU J2235.3–2557 at z _ 1.4: a surprisingly massive galaxy cluster when the universe is one-third of its current age, Astrophys. J. 704 (2009) 672; M. Baldi and V. Pettorino, High-z massive clusters as a test for dynamical coupled dark energy, Mon. Not. Roy. Astron. Soc. 412 (2011) L1 [arXiv:1006.3761][INSPIRE]; M.J. Mortonson, W. Hu and D. Huterer, Simultaneous falsification of _CDM and quintessence with massive, distant clusters, Phys. Rev. D 83 (2011) 023015 [arXiv:1011.0004] [INSPIRE].
Collections