Publication:
The role of the land-surface model for climate change projections over the Iberian Peninsula

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-01-12
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The importance of land-surface processes within Regional Climate Models for accurately reproducing the present-day climate is well known. However, their role when projecting future climate is still poorly reported. Hence, this work assesses the influence of the land-surface processes, particularly the contribution of soil moisture, when projecting future changes for temperature, precipitation and wind over a complex area as the Iberian Peninsula, which, in addition, shows great sensitivity to climate change. The main signals are found for the summer season, when the results indicate a strengthening in the increases projected for both mean temperature and temperature variability as a consequence of the future intensification of the positive soil moisture-temperature feedback. The more severe warming over the inner dry Iberian Peninsula further implies an intensification of the Iberian thermal low and, thus, of the cyclonic circulation. Furthermore, the land-atmosphere coupling leads to the projection of a wider future daily temperature range, since maximum temperatures are more affected than minima, a feature absent in non-coupled simulations. Regarding variability, the areas where the land-atmosphere coupling introduces larger changes are those where the reduction in the soil moisture content is more dramatic in future simulations, i.e., the so-called transitional zones. As regards precipitation, weaker positive signals for convective precipitation and more intense negative signals for non-convective precipitation are obtained as a result of the soil moisture-atmosphere interactions. These results highlight the crucial contribution of soil moisture to climate change projections and suggest its plausible key role for future projections of extreme events.
Description
Copyright 2012 by the American Geophysical Union. This study received support from the Spanish Ministry of Environment (projects ESCENA, reference 20080050084265, and SALVA-SINOBAS), the Spanish Ministry of Science and Technology (project INVENTO-CGL2005-06966-C07-04/CLI), the Regional Agency for Science and Technology of Murcia (Fundación Séneca, reference 00619/PI/04) and the "Instituto Euromediterráneo del Agua". P. Jiménez Guerrero thanks the Ramón y Cajal Program of the Spanish Ministry of Science and Innovation. J. J. Gómez Navarro thanks the Spanish Ministry of Education for his Doctoral scholarship (AP2006-04100). Finally, the authors gratefully acknowledge the contribution of anonymous reviewers which helped us to improve the quality and clarity of the manuscript.
Unesco subjects
Keywords
Citation
Alfieri, L., P. Claps, P. D’Odorico, F. Laio, and T. M. Over (2008), An analysis of the soil moisture feedback on convective and stratiform precipitation, J. Hydrometeorol., 9(2), 280–291. Barros, A. P., and W. J. Hwu (2002), A study of land-atmosphere interactions during summertime rainfall using a mesoscale model, J. Geophys. Res., 107(D14), 4227, doi:10.1029/2000JD000254. Betts, A. K. (2004), Understanding hydrometeorology using global models, Bull. Am. Meteorol. Soc., 85(11), 1673–1688. Chen, F., and J. Dudhia (2001), Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129(4), 569–585. Christensen, J. H., and O. B. Christensen (2007), A summary of the PRUDENCE model projections of changes in European climate by the end of this century, Clim. Change, 81, 7–30. Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner (2007), Doubled length of western European summer heat waves since 1880, J. Geophys. Res., 112, D15103, doi:10.1029/2007JD008510. Dirmeyer, P. A., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki (2006), GSWP-2: Multimodel analysis and implications for our perception of the land surface, Bull. Am. Meteorol. Soc., 87, 1381–1397. Dudhia, J. (1989), Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46(20), 3077–3107. Dudhia, J. (1996), A multi-layer soil-temperature model for MM5, paper presented at Sixth PSU/NCAR MMU Workshop, Natl. Cent. for Atmos. Res., Boulder, Colo. Fernández, J., J. P. Montávez, J. Sáenz, J. F. González Rouco, and E. Zorita (2007), Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: Annual cycle, J. Geophys. Res., 112, D04101, doi:10.1029/2005JD006649. Ferranti, L., and P. Viterbo (2006), The European summer of 2003: Sensitivity to soil water initial conditions, J. Clim., 19(15), 3659–3680. Fischer, E. M., and C. Schär (2009), Future changes in daily summer temperature variability: Driving processes and role for temperature extremes, Clim. Dyn., 33, 917–935. Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär (2007), Soil moisture-atmosphere interactions during the 2003 European summer heatwave, J. Clim., 20, 5081–5099. Font-Tullot, I. (2000), Climatologia de España y Portugal, Univ. de Salamanca, Salamanca, Spain. Gallardo, C., A. Arribas, J. A. Prego, M. A. Gaertner, and M. de Castro (2001), Multi-year simulations using a regional-climate model over the Iberian Peninsula: current climate and doubled CO2 scenario, Q. J. R. Meteorol. Soc., 127, 1659–1681. Gao, X., and F. Giorgi (2008), Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model, Global Planet. Change, 62, 195–209. Giorgi, F. (2006), Climate change hot-spots, Geophys. Res. Lett., 33, L08707, doi:10.1029/2006GL025734. Gómez Navarro, J. J., J. P. Montávez, P. Jiménez Guerrero, S. Jérez, J. A. García Valero, and J. F. González Rouco (2010), Warming patterns in regional climate change projections over the Iberian Peninsula, Meteorol. Z., 19(3), 275–285. Gómez Navarro, J. J., J. P. Montávez, S. Jérez, P. Jiménez Guerrero, R. Lorente Plazas, J. F. González Rouco, and E. Zorita (2011), A regional climate simulation over the Iberian Peninsula for the last millennium, Clim. Past, 7, 451–472. González Rouco, J. F., H. Heyen, E. Zorita, and F. Valero (2000), Agreement between observed rainfall trends and climate change simulations in the southwest of Europe, J. Clim., 13, 3057–3065. Grell, G. A. (1993), Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev., 121(3), 764–787. Grell, G. A., J. Dudhia, and D. R. Stauffer (1994), A description of the fifthgeneration Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note 398+STR, 117 pp., Natl. Cent. for Atmos. Res., Boulder, Colo. Gulden, L. E., E. Rosero, Z. L. Yang, T. Wagener, and G. Y. Niu (2008), Model performance, model robustness, and model fitness scores: A new method for identifying good land-surface models, Geophys. Res. Lett., 35, L11404, doi:10.1029/2008GL033721. Guo, Z. C., et al. (2006), The Global Land-Atmosphere Coupling Experiment. Part II: Analysis, J. Hydrometeorol., 7, 611–625. Haarsma, R. J., F. Selten, B. vd Hurk, W. Hazeleger, and X. Wang (2009), Drier Mediterranean soils due to greenhouse warming bring easterly winds over summertime central Europe, Geophys. Res. Lett., 36, L04705, doi:10.1029/2008GL036617. Henderson-Sellers, A., K. McGuffie, and A. Pitman (1996), The Project for Intercomparison of Land-Surface Parametrization Schemes (PILPS): 1992 to 1995, Clim. Dyn., 12, 849–859. Hohenegger, C., P. Brockhaus, C. Bretherton, and C. Schär (2008), The soil moisture-precipitation feedback in simulations with explicit and parameterized convection, J. Clim., 22(19), 5003–5020. Hoinka, K. P., and M. D. E. Castro (2003), The Iberian Peninsula thermal low, Q. J. R. Meteorol. Soc., 129(590), 1491–1511. Hong, S.-Y., and H.-L. Pan (1996), Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Weather Rev., 124, 2322–2339. Jaeger, E. B., and S. I. Seneviratne (2010), Impact of soil moistureatmosphere coupling on European climate extremes and trends in a regional climate model, Clim. Dyn., 36(9), 1919–1939. Jaeger, E. B., R. Stöckli, and S. I. Seneviratne (2009), Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM, J. Geophys. Res., 114, D17106, doi:10.1029/2008JD011658. Jérez, S., J. P. Montávez, J. J. Gómez Navarro, P. Jiménez Guerrero, J. Jiménez, and J. F. González Rouco (2010), Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula, Meteorol. Z., 19(4), 363–374. Jiménez, P. A., J. Vilà-Guerau de Arellano, J. F. González Rouco, J. Navarro, J. P. Montávez, E. García Bustamante, and J. Dudhia (2011), The effect of heatwaves and drought on surface wind circulations in the NE of the Iberian Peninsula during the summer of 2003, J. Clim., 24, 5416–5422. Jiménez Guerrero, P., J. J. Gómez Navarro, R. Lorente, S. Jérez, J. A. García Valero, and J. P. Montávez (2010), Variation of Secondary Inorganic Aerosols (SIA) in Europe for the 21st century (1991–2100), Atmos. Environ., 45(4), 1059–1063. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter (2002), NCEP-DOE AMIP-II Reanalysis (R-2), Bull. Am. Meteorol. Soc., 83, 1631–1643. Kato, H., M. Rodell, F. Beyrich, H. Cleugh, E. van Gorsel, H. Liu, and T. P. Meyers (2007), Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites, J. Meteorol. Soc. Japan, 85(0), 187–204. Koo, G. S., K. O. Boo, and W. T. Kwon (2009), Projection of temperature over Korea using an MM5 regional climate simulation, Clim. Res., 40(2–3), 241–248. Koster, R. D., and M. J. Súarez (2001), Soil moisture memory in climate models, J. Hydrometeorol., 2(6), 558–570. Koster, R. D., et al. (2004), Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138–1140. Koster, R. D., et al. (2006), GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview, J. Hydrometeorol., 7, 590–610. Legutke, S., and R. Voss (1999), ECHO-G, The Hamburg Atmosphere–Ocean Coupled Circulation Model, Dtsch. Klimarechenzent., 18, 43 pp. Luo, Y., E. H. Berbery, K. E. Mitchell, and A. K. Betts (2007), Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis, J. Hydrometeorol., 8(6), 1184–1203. Manabe, S. (1969), Climate and ocean circulation. I. Atmospheric circulation and hydrology of Earth’s surface, Mon. Weather Rev., 97, 739–774. May, W. (2008), Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model, Clim. Dyn., 30, 581–603. Miao, J. F., D. Chen, and K. Borne (2007), Evaluation and comparison of Noah and Pleim-Xiu land surface models in MM5 using GÖTE2001 data: Spatial and temporal variations in near-surface air temperature, J. Appl. Meteorol. Climatol., 46(10), 1587–1605. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102, 16,663–16,682, doi:10.1029/97JD00237. Pérez, F. F., et al. (2010), Clima en España: Pasado, presente y futuro: Informe de Evaluación del Cambio Climático Regional, report, Span. Min. of Sci. and Innovation, Madrid, Spain. Pielke, R. A., Sr. (2001), Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, Rev. Geophys., 39(2), 151–177, doi:10.102 /1999RG000072. Pitman, A. (2003), The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Clim., 23, 479–510. Pitman, A., et al. (2009), Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study, Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076. Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai (2000), The global soil moisture data bank, Bull. Am. Meteorol. Soc., 81(6), 1281–1299. Schär, C., D. Lüthi, U. Beyerle, and E. Heise (1999), The soil-precipitation feedback: A process study with a regional climate model, J. Clim., 12(3), 722–741. Seneviratne, S. I., et al. (2006a), Soil moisture memory in AGCM mimulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data, J. Hydrometeorol., 7(5), 1090–1112. Seneviratne, S. I., D. Luethi, M. Litschi, and C. Schaer (2006b), Landatmosphere coupling and climate change in Europe, Nature, 443(7108), 205–209. Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling (2010), Investigating soil moistureclimate interactions in a changing climate: A review, Earth Sci. Rev., 99(3–4), 125–161. Sridhar, V., R. L. Elliott, F. Chen, and J. A. Brotzge (2002), Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma, J. Geophys. Res., 107(D20), 4418, doi:10.1029/2001JD001306. Steiner, A. L., J. S. Pal, S. A. Rauscher, J. L. Bell, N. S. Diffenbaugh, A. Boone, L. C. Sloan, and F. Giorgi (2009), Land surface coupling in regional climate simulations of the West African monsoon, Clim. Dyn., 33(6), 869–892. Sumner, G. N., R. Romero, V. Homar, C. Ramis, S. Alonso, and E. Zorita (1995), An estimate of the effects of climate change on the rainfall of Mediterranean Spain by the late twenty first century, Int. J. Clim., 15, 673–696. Tapiador, F. J., E. Sánchez, and M. A. Gaertner (2007), Regional changes in precipitation in Europe under an increased greenhouse emissions scenario, Geophys. Res. Lett., 34, L06701, doi:10.1029/2006GL029035. Taylor, C. M., D. J. Parker, and P. P. Harris (2007), An observational case study of mesoscale atmospheric circulations induced by soil moisture, Geophys. Res. Lett., 34, L15801, doi:10.1029/2007GL030572. Trigo, R. M., and J. P. Palutikof (2001), Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques, J. Clim., 14, 4422–4446. Yang, S., S. H. Yoo, R. Yang, K. E. Mitchell, H. van den Dool, and R. W. Higgins (2007), Response of seasonal simulations of a regional climate model to high-frequency variability of soil moisture during the summers of 1988 and 1993, J. Hydrometeorol., 8(4), 738–757. Zhang, J., W. C. Wang, and J. Wei (2008), Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation, J. Geophys. Res., 113, D17119, doi:10.1029/2008JD009807. Zhang, J., W. C. Wang, and L. Wu (2009), Land-atmosphere coupling and diurnal temperature range over the contiguous United States, Geophys. Res. Lett., 36, L06706, doi:10.1029/2009GL037505. Zorita, E., J. F. González Rouco, H. von Storch, J. P. Montávez, and F. Valero (2005), Natural and anthropogenic modes of surface temperature variations in the last thousand years, Geophys. Res. Lett., 32, L08707, doi:10.1029/2004GL021563.
Collections