Publication:
Tight-binding approach to penta-graphene

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-03-04
Authors
Stauber, T.
Schliemann, J.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Nature publishing group
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We introduce an effective tight-binding model to discuss penta-graphene and present an analytical solution. This model only involves the π-orbitals of the sp2-hybridized carbon atoms and reproduces the two highest valence bands. By introducing energy-dependent hopping elements, originating from the elimination of the sp3-hybridized carbon atoms, also the two lowest conduction bands can be well approximated - but only after the inclusion of a Hubbard onsite interaction as well as of assisted hopping terms. The eigenfunctions can be approximated analytically for the effective model without energy-dependent hopping elements and the optical absorption is discussed. We find large isotropic absorption ranging from 7.5% up to 24% for transitions at the Γ-point.
Description
© 2016 Macmillan Publishers Limited. We thank Félix Yndurain and Paul Wenk for useful discussions. This work has been supported by Spain’s MINECO under grants FIS2013-48048-P and FIS2014-57432-P, by the Comunidad de Madrid under grant S2013/MIT-3007 MAD2D-CM, and by Deutsche Forschungsgemeinschaft via GRK 1570. JIB thanks the ERC starting Investigator Award, grant #239739 STEMOX.
Unesco subjects
Keywords
Citation
1. Novoselov, K. S., et al., Electric field effect in atomically thin carbon films, Science, 306, 666–669 (2004). 2. Novoselov, K. S., et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA ,102, 10451–10453 (2005). 3. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E., C60: Buckminsterfullerene, Nature, 318, 162–163 (1985). 4. Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 56–58 (1991). 5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys., 81, 109–162 (2009). 6. Zhang, S., et al., Penta-graphene: A new carbon allotrope, Proc. Natl. Acad. Sci. USA, 112, 2372–2377 (2015). 7. Yagmurcukardes, M., et al., Pentagonal monolayer crystals of carbon, boron nitride, and silver azide, J. App. Phys., 118 (2015). 8. Wallace, P. R., The band theory of graphite, Phys. Rev., 71, 622–634 (1947). 9. McClure, J. W., Diamagnetism of graphite, Phys. Rev., 104, 666–671 (1956). 10. Slonczewski, J. C., Weiss, P. R., Band structure of graphite, Phys. Rev., 109, 272–279 (1958). 11. Jorio, A., et al., Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant raman scattering, Phys. Rev. Lett., 86, 1118–1121 (2001). 12. Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P., Tight-binding description of graphene, Phys. Rev. B, 66, 035412 (2002). 13. Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558–561 (1993). 14. Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251–14269 (1994). 15. Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758–1775 (1999). 16. Perdew, J. P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865–3868 (1996). 17. Monkhorst, H. J., Pack, J. D., Special points for brillouin-zone integrations, Phys. Rev. B, 13, 5188–5192 (1976). 18. Slater, J. C., Koster, G. F., Simplified lcao method for the periodic potential problem, Phys. Rev., 94, 1498–1524 (1954). 19. Yuan, S., Rösner, M., Schulz, A., Wehling, T. O., Katsnelson, M. I., Electronic structures and optical properties of partially and fully fluorinated graphene, Phys. Rev. Lett., 114, 047403 (2015). 20. Hirsch, J. E., Marsiglio, F., Hole superconductivity in oxides: A two-band model, Phys. Rev. B, 43, 424–434 (1991). 21. Hirsch, J. E., Electron- and hole-hopping amplitudes in a diatomic molecule, Phys. Rev. B, 48, 3327–3339 (1993). 22. Guinea, F., Effect of assisted hopping on the formation of local moments in magnetic impurities and quantum dots, Phys. Rev. B, 67, 195104 (2003). 23. Stauber, T., Guinea, F., Assisted hopping in the anderson impurity model: A flow equation study, Phys. Rev. B, 69, 035301 (2004). 24. Paul, I., Kotliar, G., Thermal transport for many-body tight-binding models, Phys. Rev. B, 67, 115131 (2003). 25. Nair, R. R., et al., Fine structure constant defines visual transparency of graphene, Science, 320, 1308–1308 (2008). 26. Mak, K. F., et al., Measurement of the optical conductivity of graphene, Phys. Rev. Lett., 101, 196405 (2008). 27. Fang, H., et al., Quantum of optical absorption in two-dimensional semiconductors, 110, 11688–11691 (2013). 28. Stauber, T., Noriega-Pérez, D., Schliemann, J., Universal absorption of two-dimensional systems, Phys. Rev. B, 91, 115407 (2015). 29. García de Abajo, F. J., Colloquium: Light scattering by particle and hole arrays, Rev. Mod. Phys., 79, 1267–1290 (2007). 30. Weaire, D., Thorpe, M. F., Electronic properties of an amorphous solidi: a simple tight-binding theory, Phys. Rev. B, 4, 2508–2520 (1971). 31. Hatsugai, Y., Shiraishi, K., Aoki, H., Flat bands in the weaire-thorpe model and silicene, New J. Phys., 17, 025009 (2015). 32. Mielke, A., Tasaki, H., Ferromagnetism in the hubbard model: examples from models with degenerate single-electron ground states, Comm. Math. Phys., 158, 341–371 (1993).
Collections