Publication:
Thermodynamic glass transition in a spin glass without time-reversal symmetry

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-04-24
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
National Academy of Sciences
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
Description
© 2012 National Academy of Sciences. Artículo firmado por 22 autores. We thank Davide Rossetti for introducing us to the handling of the 128-bit registers. We acknowledge partial financial support from Ministerio de Ciencia e Innovación (MICINN), Spain, (contract nos. FIS2009-12648-C03, FIS2010-16587, TEC2010-19207), from Universidad Complutense de Madrid (UCM)-Banco de Santander (GR32/10-A/910383), from Junta de Extremadura, Spain (contract no. GR10158), and from Universidad de Extremadura (contract no. ACCVII-08). B.S. and D.Y. were supported by the Formación de Profesorado Universitario (FPU) program (Ministerio de Educación, Spain); R.A.B. and J.M.-G. were supported by the Formación de Personal Investigador (FPI) program (Diputación de Aragón, Spain); finally J.M.G.-N. was supported by the FPI program (Ministerio de Ciencia e Innovación, Spain).
Unesco subjects
Keywords
Citation
1. Debenedetti PG, (1997) Metastable Liquids (Princeton University Press, Princeton). 2. Debenedetti PG, Stillinger FH, (2001) Supercooled liquids and the glass transition, Nature 410:259–267. 3. Cavagna A, (2009) Supercooled liquids for pedestrians, Phys Rep, 476:51–124. 4. Mydosh JA, (1993) Spin Glasses: an Experimental Introduction (Taylor and Francis, London). 5. Hérisson D, Ocio M, (2002) Fluctuation-dissipation ratio of a spin glass in the aging regime, Phys Rev Lett, 88:257202. 6. Cruz A, et al., (2001) SUE: A special purpose computer for spin glass models, Computer Physics Communications, 133:165–176. 7. Ogielski A, (1985) Dynamics of three-dimensional Ising spin glasses in thermal equilibrium, Phys Rev B, 32:7384–7398. 8. Belletti F, et al., (2008) Simulating spin systems on IANUS, an FPGA-based computer, Computer Physics Communications, 178:208–216. 9. Belletti F, et al., (2008) Nonequilibrium spin-glass dynamics from picoseconds to one tenth of a second, Phys Rev Lett, 101:157201. 10. Gunnarsson K, et al., (1991) Static scaling in a short-range Ising spin glass, Phys Rev B, 43:8199–8203. 11. Ballesteros HG, et al., (2000) Critical behavior of the three-dimensional Ising spin glass, Phys Rev B, 62:14237–14245. 12. Palassini M, Caracciolo S, (1999) Universal finite-size scaling functions in the 3D Ising spin glass, Phys Rev Lett, 82:5128–5131. 13. Bray AJ, Moore MA, (2011) Disappearance of the de Almeida-Thouless line in six dimensions, Phys Rev B, 83:224408. 14. Parisi G, Temesvári T, (2011) Replica symmetry breaking in and around six dimensions, Nucl Phys B, 858:293–316. 15. Bray AJ, Roberts SA, (1980) Renormalization-group approach to the spin glass transition in finite magnetic fields, J Phys C Solid State, 13:5405–5412. 16. de Almeida JRL, Thouless DJ, (1978) Stability of the Sherrington-Kirkpatrick solution of a spin glass model, J Phys A, 11:983–990. 17. Fisher DS, Sompolinsky H, (1985) Scaling in spin-glasses, Phys Rev Lett, 54:1063–1066. 18. Young AP, Katzgraber HG, (2004) Absence of an Almeida-Thouless line in three-dimensional spin glasses, Phys Rev Lett, 93:207203. 19. Jörg T, Katzgraber H, Krzakala F, (2008) Behavior of Ising spin glasses in a magnetic field, Phys Rev Lett, 100:197202. 20. Jönsson PE, Takayama H, Aruga Jatori H, Ito A, (2005) Dynamical breakdown of the Ising spin-glass order under a magnetic field, Phys Rev B, 71:180412. 21. Petit D, Fruchter L, Campbell I, (1999) Ordering in a spin glass under applied magnetic field, Phys Rev Lett, 83:5130–5133. 22. Petit D, Fruchter L, Campbell I, (2002) Ordering in Heisenberg spin glasses, Phys Rev Lett, 88:207206. 23. Tabata Y, et al., (2010) Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass DyxY1−xRu2Si2, J Phys Soc Japan, 79:123704. 24. Moore M, Drossel B, (2002) p-spin model in finite dimensions and its relation to structural glasses, Phys Rev Lett, 89:217202. 25. Leuzzi L, Parisi G, Ricci-Tersenghi F, Ruiz-Lorenzo JJ, (2009) Ising spin-glass transition in a magnetic field outside the limit of validity of mean-field theory, Phys Rev Lett, 103:267201. 26. Amit DJ, Martín-Mayor V, (2005) Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore), third edition. 27. Di Francesco P, Saleur H, Zuber JB, (1987) Critical Ising correlation functions in the plane and on the torus, Nucl Phys B, 290:527–581. 28. Di Francesco P, Saleur H, Zuber JB, (1988) Correlation functions of the critical Ising model on a torus, Europhys Lett, 5:95–100. 29. Ballesteros HG, Fernández LA, Martín-Mayor V, Muñoz Sudupe A, (1996) New universality class in three dimensions?: the antiferromagnetic RP2 model, Phys Lett B, 378:207–212. 30. Billoire A, et al., (2011) Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses, J Stat Mech, P10019. 31. Baños RA, et al., (2010) Static versus dynamic heterogeneities in the D ¼ 3 Edwards-Anderson-Ising spin glass, Phys Rev Lett, 105:177202. 32. Yllanes D, (2011) Rugged free-energy landscapes in disordered spin systems (UCM, Madrid). 33. Jörg T, Katzgraber HG, (2008) Universality and universal finite-size scaling functions in four-dimensional Ising spin glasses, Phys Rev B, 77:214426. 34. Marinari E, Zuliani F, (1999) Numerical simulations of the 4D Edwards-Anderson spin glass with binary couplings, J Phys A, 32:7447–7462. 35. Fisher DS, Huse DA, (1988) Equilibrium behavior of the spin-glass ordered phase, Phys Rev B, 38:386–411. 36. Hartmann AK, (1999) Calculation of ground states of four-dimensional +/-J Ising spin glasses, Phys Rev E, 60:5135–5138. 37. Hukushima K, (1999) Domain-wall free energy of spin-glass models: Numerical method and boundary conditions, Phys Rev E, 60:3606–3613. 38. Hukushima K, Nemoto K, (1996) Exchange monte carlo method and application to spin glass simulations, J Phys Soc Jpn, 65:1604–1608. 39. Marinari E, (1998) in Advances in Computer Simulation, eds J Kerstész and I Kondor (Springer-Verlag, Berlin). 40. Newman MEJ, Barkema GT, (1999) Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford). 41. Baños RA, et al., (2010) Nature of the spin-glass phase at experimental length scales, J Stat Mech, P06026. 42. Cooper F, Freedman B, Preston D, (1982) Solving ϕ4 1;2 field theory with Monte Carlo, Nucl Phys B, 210:210–228. 43. Zinn-Justin J, (2005) Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford), fourth edition. 44. Bray AJ, Moore MA, (1987) Heidelberg Colloquium on Glassy Dynamics, eds JL van Hemmen and I Morgenstern (Springer, Berlin), Lecture Notes in Physics No. 275, pp 121–153. 45. de Dominicis C, Kondor I, Temesvári T, (1998) in Spin Glasses and Random Fields, ed AP Young (World Scientific, Singapore).
Collections