Publication:
Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-10
Authors
Billoire, A.
Maiorano, A.
Marinari, E.
Yllanes, D.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Using the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three dimensional Edwards Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behaviour of our data is nicely described by straightforward finitesize scaling relations.
Description
© 2011 IOP Publishing Ltd and SISSA. We are indebted to the Janus collaboration that has allowed us to use equilibrium spin configurations of the D = 3 Edwards-Anderson model [4, 5] obtained by large scale numerical simulations. AB thanks Cécile Monthus and Thomas Garel for discussions at an early stage of the work and, specially, Barbara Coluzzi for a sustained collaboration on the study of the SK model. We acknowledge partial financial support from MICINN, Spain, (contract no FIS2009-12648-C03), from UCM-Banco de Santander (GR32/10-A/910383) and from the DREAM Seed Project of the Italian Institute of Technology (IIT). DY was supported by the FPU program (Spain).
Unesco subjects
Keywords
Citation
[1] J. A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London 1993) [2] K. H. Fisher, J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge 1993). [3] Y. G. Joh, et al., Phys. Rev. Lett., 82, 438 (1999). [4] R. Álvarez Baños, A. Cruz, L. A. Fernández, J. M. Gil Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte García, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Pérez Gaviro, J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancón, R. Tripiccione, D. Yllanes (Janus Collaboration), J. Stat. Mech., 2010, P06026. [5] R. Álvarez Baños, A. Cruz, L. A. Fernández, J. M. Gil Narvión, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte García, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Pérez Gaviro, J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancón, R. Tripiccione, D. Yllanes (Janus Collaboration), Phys. Rev. Lett., 105, 177202 (2010). [6] D. J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore 2005). [7] See e.g. L. Berthier, et al., Science, 310, 1797 (2005), and references therein. [8] A. B. Harris, J. Phys. C, 7, 1671 (1974). [9] A. Aharony, A. B. Harris, Phys Rev Lett, 77, 3700 (1996). [10] F. Pázmándi, R. T. Scalettar, G. T. Zimányi, Phys. Rev. Lett., 79, 5130 (1997). [11] S. Wiseman, E. Domany, Phys. Rev. Lett., 81, 22 (1998) -- ibid, Phys Rev E, 58, 2938 (1998). [12] A. Aharony, A. B. Harris, S. Wiseman, Phys. Rev. Lett., 81, 252 (1998). [13] K. Bernardet, F. Pázmándi, G. G. Batrouni, Phys. Rev. Lett., 84, 4477 (2000). [14] S. Wiseman, E. Domany, Phys Rev E, 52, 3469 (1995). [15] J. T. Chayes, L. Chayes, D. S. Fisher, T. Spencer, Phys. Rev. Lett., 57, 2999 (1986). [16] T. Sarlat, A. Billoire, G. Biroli, J.-P. Bouchaud, J. Stat. Mech., P08014 (2009). [17] M. Castellana, E. Zarinelli, Phys. Rev. B, 84, 144417 (2011). [18] M. Castellana, A. Decelle, E. Zarinelli, preprint arXiv:1107.1795. [19] A. Billoire, B. Coluzzi (2006), unpublished. [20] G. Parisi, F. Ritort, F. Slanina, J. Phys. A: Math. Gen., 26, 247 (1993). [21] We are assuming that hSxiJ 6= 0 in the low temperature phase, i.e. for example that we are working with an infinitesimal magnetic field. [22] T. Aspelmeier, A. Billoire, E. Marinari, M. A. Moore, J. Phys. A, 41, 324008 (2008). [23] See for example B. Efron and R. J. Tibshirani, An Introduction to the Boostrap (Chapman & Hall/CRC,London 1994). [24] M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 78, 214205 (2008). [25] H. G. Katzgraber, M. Körner, A. P. Young, Phys. Rev. B, 73, 224432 (2006). [26] D. J. Thouless, P. W. Anderson, R. G. Palmer, Philos. Mag., 35, 593 (1977). [27] A. J. Bray, M. A. Moore, J. Phys. C: Solid State Phys., 12, L441 (1979). [28] C. A. Tracy, H. Widom, Comm. Math. Phys., 177, 727 (1996) -- M. Dieng, Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representation PhD thesis, UC Davis (2005), arXiv:math/0506586 -- P. Deift, D.Gioev, Comm. Pure Appl. Math., 60, 867 (2007), arXiv:math-ph/0507023. [29] T. W. Anderson, Ann. Math. Statist., 33, 1148 (1962). [30] D. A. Darling, Ann. Math. Statist., 28, 823 (1957). [31] D. A. Darling, Ann. Math. Statist., 26, 1 (1955). [32] Given two independent samples of N and M values respectively of a random variable x, whose empirical distribution functions are F_(N) (x) and G_(M)(x), and being H_(N+M)(x) the empirical distribution function of the sample obtained by combining the two original samples together, the two-samples Cramér-von Mises statistics is the distance T(N,M) = [N M/(N + M)] R^(∞)_(−∞) [F_(N)(x) – G_(M)(x)]^(2)dH_(N+M)(x).
Collections