Universidad Complutense de Madrid
E-Prints Complutense

Signal Processing Techniques for Chipless UWB RFID Thermal Threshold Detector Detection.



Downloads per month over past year

Lazaro, A. and Ramos del Olmo, Ángel Manuel and Girbau, D. and Villarino, R. (2016) Signal Processing Techniques for Chipless UWB RFID Thermal Threshold Detector Detection. IEEE Antennas and Wireless Propagation Letters, 15 . pp. 618-621. ISSN 15361225

Official URL: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7177053&abstractAccess=no&userType=inst



This letter presents signal processing techniques to detect a passive thermal threshold detector based on a chipless time-domain ultrawideband (UWB) radio frequency identification (RFID) tag. The tag is composed by a UWB antenna connected to a transmission line, in turn loaded with a biomorphic thermal switch. The working principle consists of detecting the impedance change of the thermal switch. This change occurs when the temperature exceeds a threshold. A UWB radar is used as the reader. The difference between the actual time sample and a reference signal obtained from the averaging of previous samples is used to determine the switch transition and to mitigate the interferences derived from clutter reflections. A gain compensation function is applied to equalize the attenuation due to propagation loss. An improved method based on the continuous wavelet transform with Morlet wavelet is used to overcome detection problems associated to a low signal-to-noise ratio at the receiver. The average delay profile is used to detect the tag delay. Experimental measurements up to 5 m are obtained.

Item Type:Article
Uncontrolled Keywords:Chipless; Continuous wavelet transform (CWT); Radio frequency identification (RFID); Temperature sensor; Ultrawideband (UWB)
Subjects:Sciences > Mathematics
ID Code:37816
Deposited On:23 May 2016 14:05
Last Modified:12 Dec 2018 15:06

Origin of downloads

Repository Staff Only: item control page