Publication:
Tethered Monte Carlo: computing the effective potential without critical slowing down

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-02-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Description
© 2008 Elsevier B.V. We were partially supported by MEC (Spain) through contract No. FIS-2006-08533-C03-01 and by CAM (Spain) through contract No. CCG07-UCM/ESP-2532.
Unesco subjects
Keywords
Citation
[1] D.J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, third ed., World Scientific, Singapore, 2005. [2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, third ed., Clarendon Press, Oxford, 1996. [3] A. Pelissetto, E. Vicari, Phys. Rep., 368 (2002) 549. [4] D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, second ed., Cambridge Univ. Press, 2005 -- M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford, 1999. [5] A.D. Sokal, in: C. DeWitt-Morette, P. Cartier, A. Folacci (Eds.), Functional Integration: Basics and Applications, 1996 Cargèse school, Plenum, New York, 1997. [6] R.H. Swendsen, J.-S. Wang, Phys. Rev. Lett., 58 (1987) 86 -- U. Wolff, Phys. Rev. Lett., 62 (1989) 361. [7] Y. Deng, T.M. Garoni, W. Guo, H.W.J. Blöte, A.D. Sokal, Phys. Rev. Lett., 98 (2007) 120601 -- Y. Deng, T.M. Garoni, A.D. Sokal, Phys. Rev. Lett., 99 (2007) 110601 -- Y. Deng, T.M. Garoni, A.D. Sokal, cond-mat/0701113 -- Y. Deng, T.M. Garoni, J. Machta, G. Ossola, M. Polin, A.D. Sokal, arXiv: 0705.2751. [8] H.J. Rothe, Lattice Gauge Theories: An Introduction, third ed., World Scientific, Singapore, 2005 -- M. Creutz, Quarks, Gluons and Lattices, Cambridge Univ. Press, 1985. [9] See, e.g., P.G. Benedetti, Metastable Liquids, Princeton Univ. Press, 1997. [10] See, e.g., M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond, World Scientific, Singapore, 1987 -- J.A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor and Francis, London, 1993. [11] J.N. Onuchic, Z. Luthey-Schulten, P.G. Wolynes, Annu. Rev. Phys. Chem., 48 (1997) 545. [12] L. Onsager, Phys. Rev., 65 (1944) 117. [13] A.B. Zamolodchikov, Adv. Stud. Pure Math., 19 (1989) 641 -- A.B. Zamolodchikov, Int. J. Mod. Phys. A, 4 (1989) 4235. [14] G. Delfino, G. Mussardo, P. Simonetti, Nucl. Phys. B, 473 (1996) 469 -- P. Fonseca, A. Zamolodchikov, J. Stat. Phys., 110 (2003) 527 -- See G. Delfino, J. Phys. A, 37 (2004) R45, for a review. [15] M. Caselle, P. Grinza, N. Magnoli, Nucl. Phys. B, 579 (2000) 635 -- P. Grinza, A. Rago, Nucl. Phys. B, 651 (2003) 387 -- M. Caselle, P. Grinza, A. Rago, J. Stat. Mech., 0410 (2004) P009. [16] N. Metropolis, A.W. Rosenbluth, N.M. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys., 21 (1953) 1087. [17] V. Martín-Mayor, Phys. Rev. Lett., 98 (2007) 137207. [18] L.A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J.J. Ruiz-Lorenzo, Phys. Rev. Lett., 100 (2008) 057201. [19] M. Creutz, Phys. Rev. Lett., 50 (1983) 1411. [20] B.A. Berg, T. Neuhaus, Phys. Rev. Lett., 68 (1992) 9. [21] A. Nußbaumer, E. Bittner, T. Neuhaus, W. Janke, Europhys. Lett., 75 (2006) 716 -- A. Nußbaumer, E. Bittner, W. Janke, Phys. Rev. E, 77 (2008) 041109. [22] F. Wang, D.P. Landau, Phys. Rev. Lett., 86 (2001) 2050. [23] C. Zhou, T.C. Schulthess, S. Torbrügge, D.P. Landau, Phys. Rev. Lett., 96 (2006) 120201 -- S.-H. Tsai, F. Wang, D.P. Landau, Phys. Rev. E, 75 (2007) 061108. [24] K. Kawasaki, Phys. Rev., 145 (1966) 224. [25] B.M. McCoy, T.T. Wu, The Two Dimensional Ising Model, Harvard Univ. Press, 1973. [26] A.E. Ferdinand, M.E. Fisher, Phys. Rev., 185 (1969) 832. [27] F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B, 210 (1982) 210. [28] S. Caracciolo, R.G. Edwards, S.J. Ferreira, A. Pelissetto, A.D. Sokal, Phys. Rev. Lett., 74 (1995) 2969. [29] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Phys. Lett. B, 378 (1996) 207 -- H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Nucl. Phys. B, 483 (1997) 707. [30] F. Belletti, et al., JANUS Collaboration, Comput. Sci. Eng., 8 (2006) 41 -- F. Belletti, et al., JANUS Collaboration, Comput. Phys. Commun., 178 (2008) 208, arXiv: 0710.3535. [31] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, second ed., Cambridge Univ. Press, 1992. [32] G. Ossola, A.D. Sokal, Nucl. Phys. B, 691 (2004) 259. [33] G. Ossola, A.D. Sokal, Phys. Rev. E, 70 (2004) 027701. [34] G. Parisi, F. Rapuano, Phys. Lett. B, 157 (1985) 301. [35] P.C. Hohenberg, B. Halperin, Rev. Mod. Phys., 49 (1977) 435. [36] P. Tamayo, W. Klein, Phys. Rev. Lett., 63 (1989) 2757. [37] J. Salas, A.D. Sokal, J. Stat. Phys., 98 (2000) 551. [38] H.G. Ballesteros, L.A. Fernández, A. Muñoz Sudupe, V. Martín-Mayor, Phys. Lett. B, 387 (1996) 125. [39] M. Caselle, M. Hasenbusch, A. Pelissetto, E. Vicari, J. Phys. A: Math. Gen., 34 (2001) 2923. [40] J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, P. Weisz, Nucl. Phys. B, 583 (2000) 614. [41] J.-K. Kim, J. Phys. A: Math. Gen., 33 (2000) 2675. [42] M. Sweeny, Phys. Rev. B, 27 (1983) 4445 -- U. Wolff, Nucl. Phys. B, 300 (1988) 501. [43] C.N. Yang, Phys. Rev., 85 (1952) 808. [44] T. Natterman, in: A.P. Young (Ed.), Spin Glasses and Random Fields, World Scientific, Singapore, 1997. [45] A. Maiorano, V. Martín-Mayor, J.J. Ruiz-Lorenzo, A. Tarancón, Phys. Rev. B, 76 (2007) 064435. [46] M. Biskup, L. Chayes, R. Kotecký, Europhys. Lett., 60 (2002) 21 -- K. Binder, Physica (Amsterdam), 319A (2003) 99 -- L.G. MacDowell, P. Virnau, M. Müller, K. Binder, J. Chem. Phys., 120 (2004) 5293.
Collections