Publication:
Subband energy in two-band δ-doped semiconductors

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1996-02-19
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study electron dynamics in a two-band δ-doped semiconductor within the envelope-function approximation. Using a simple parametrization of the confining potential arising from the ionized donors in the δ -doping layer, we are able to find exact solutions of the Dirac-type equation describing the coupling of host bands. As an application we then consider Si δ -doped GaAs. In particular we find that the ground subband energy scales as a power law of the Si concentration per unit area in a wide range of doping levels. In addition, the coupling of host bands leads to a depression of the subband energy due to nonparabolicity effects.
Description
© Elsevier B.V. or its licensors or contributors. This work is supported by CICYT (Spain) through project MAT95-0325.
Unesco subjects
Keywords
Citation
[1] A. Zrenner, H. Reisinger, and K. Ploog, Proc. 17th Int. Conf. Physics of Semiconductors (San Francisco, 1984) edited by J. P. Chadi and W. A. Harrison, p. 325 (Springer, Berlin, 1985). [2] T. E. Whall, Contemp. Phys. 33, 369 (1992). [3] K. Ploog, J. Cryst. Growth. 81, 304 (1987). [4] H. P. Zeindl, T. Wegehaupt, I. Eisele, H. Oppolzer, H. Reisinger, G. Tempel, and F. Koch, Appl. Phys. Lett. 50, 1164 (1987). [5] W. Cheng, A. Zrenner, Q. Y. Ye, F. Koch, D. Grützmacher, and P. Balk, Semicond. Sci. Technol. 4, 16 (1989). [6] J. Kortus and J. Monecke, Phys. Rev. B 49, 17 216 (1994). [7] G. Bastard, Phys. Rev. B 24, 5693 (1981). [8] F. Domínguez-Adame and B. Méndez, Semicond. Sci. Technol. 9, 1358 (1994). [9] L. Ioratti, Phys. Rev. B 41, 8340 (1990). [10] J. C. Egues, J. C. Barbosa, A. C. Notari, P. Basmaji, L. Ioratti, E. Ranz, and J. C. Portal, J. Appl. Phys. 70, 3678 (1991). [11] F. Domínguez-Adame and B. M´endez, Phys. Rev. B 49, 11 471 (1994). [12] M. H. Degani, Phys. Rev. B 44, 5580 (1991). [13] A. Zrenner, F. Koch, and K. Ploog, Surf. Sci. 196, 671 (1988). [14] J. A. Cuesta, A. Sánchez, and F. Domínguez-Adame, Semicond. Sci. Technol. 10, 1303 (1995). [15] A. Gold, A. Ghazali, and J. Serre, Semicond. Sci. Technol. 7, 972 (1992). [16] P. M. Koenraad, F. A. P. Blom, C. J. G. M. Langerak, M. R. Leys, J. A. A. J. Perenboom, J. Singleton, S. J. R. M. Spermon, W. C. van der Vleuten, A. P. J. Voncken, and J. H. Wolker, Semicond. Sci. Technol. 5, 861 (1990). [17] J. Callaway, Quantum Theory of the Solid State, (Academic Press, San Diego, CA) p. 33. [18] R. Beresford, Semicond. Sci. Technol. 8, 1957 (1993). [19] R. Beresford, Phys. Rev. B 49, 13 663 (1994). [20] R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958). [21] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, (Washington: US Government Printing Office, 1964). [22] Q. S. Zhu, Z. T. Zhong, L. W. Lu, and C. F. Li, Appl. Phys. Lett. 65, 2425 (1994). [23] E. F. Schubert, T. D. Harris, J. E. Cunningham, and W. Jan, Phys. Rev. B 39, 11 011 (1989). [24] A. Z. Capri and R. Ferrari, Can. J. Phys. 63, 1029 (1985). [25] F. Domínguez-Adame and M. A. González, Europhys. Lett. 13, 193 (1992). [26] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, (Les Editions de Physique, Les Ulis, France) p. 73.
Collections