Publication:
Surface wind-stress threshold for glacial Atlantic overturning

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-02-07
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Using a coupled model of intermediate complexity the sensitivity of the last glacial maximum (LGM) Atlantic meridional overturning circulation (AMOC) to the strength of surface wind-stress is investigated. A threshold is found below which North Atlantic deep water formation (DWF) takes place south of Greenland and the AMOC is relatively weak. Above this threshold, DWF occurs north of the Greenland-Scotland ridge, leading to a vigorous AMOC. This nonlinear behavior is explained through enhanced salt transport by the wind-driven gyre circulation and the overturning itself. Both pattern and magnitude of the Nordic Sea's temperature difference between strong and weak AMOC states are consistent with those reconstructed for abrupt climate changes of the last glacial period. Our results thus point to a potentially relevant role of surface winds in these phenomena.
Description
© 2008 by the American Geophysical Union. M. M. was funded by the Ramón y Cajal Program and project CGL2005-06097/CLI of the Spanish Ministry for Science and Education. We are grateful to J. R. Toggweiler for constructive criticism which has improved this manuscript.
Unesco subjects
Keywords
Citation
CLIMAP Project Members (1976), The surface of the ice-age, Science, 191, 1131 – 1137. Crowley, T. J., and G. R. North (1991), Paleoclimatology, 339 pp., Oxford Univ. Press, New York. Delmonte, B., J. R. Petit, K. K. Andersen, I. Basile-Doelsch, V. Maggi, and V. Y. Lipenkov (2004), Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition, Clim. Dyn., 23, 427 – 438. Fichefet, T., and M. A. M. Maqueda (1997), Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12,609 – 12,646. Ganopolski, A., and S. Rahmstorf (2001), Rapid changes of glacial climate simulated in a coupled climate model, Nature, 409, 153 – 158. Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, and J. Jouzel (1993), Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366, 552 – 554. Guilderson, T. P., R. G. Fairbanks, and J. L. Rubenstone (1994), Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change, Science, 263, 663 – 665. Häkkinen, S. (2001), Variability in sea surface height: A qualitative measure for the meridional overturning in the North Atlantic, J. Geophys. Res., 106, 13,837 – 13, 848. Hewitt, C. D., R. J. Stouffer, A. J. Broccoli, J. F. B. Mitchell, and P. J. Valdes (2003), The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum, Clim. Dyn., 20, 203 – 218. Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf (2007), On the driving processes of the Atlantic meridional overturning circulation, Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166. Levermann, A., and A. Born (2007), Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model, Geophys. Res. Lett., 34, L24605, doi:10.1029/2007GL031732. Li, C., D. S. Battisti, D. P. Schrag, and E. Tziperman (2005), Abrupt climate shifts in Greenland due to displacements of the sea ice edge, Geophys. Res. Lett., 32, L19702, doi:10.1029/2005GL023492. Marchal, O., R. Franc¸ois, T. F. Stocker, and F. Joos (2000), Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio, Paleoceanography, 15(6), 625 – 641. Montoya, M., A. Griesel, A. Levermann, J. Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf (2005), The earth system model of intermediate complexity CLIMBER-3a. Part I: Description and performance for present day conditions, Clim. Dyn., 25, 237 – 263. Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala (2006), Last Glacial Maximum and Holocene climate in CCSM3, J. Clim., 19, 2526 – 2544. Peltier, W. R. (2004), Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM 2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32(1), 111 – 149. Petoukhov, V., A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki, and S. Rahmstorf (2000), CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate, Clim. Dyn., 16, 1 – 17. Rahmstorf, S. (1996), On the freshwater forcing and transport of the Atlantic thermohaline circulation, Clim. Dyn., 12, 799 – 811. Rosell-Melé, A., E. Bard, K.-C. Emeis, B. Grieger, C. Hewitt, P. J. Müller, and R. R. Schneider (2004), Sea surface temperature anomalies in the oceans at the LGM estimated from the alkenone-U37 K0 index: Comparison with GCMs, Geophys. Res. Lett., 31, L03208, doi:10.1029/2003GL018151. Ruth, U., D. Wagenbach, J. P. Steffensen, and M. Bigler (2003), Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period, J. Geophys. Res., 108(D3), 4098, doi:10.1029/2002JD002376. Toggweiler, J. R., and B. Samuels (1998), On the ocean’s large scale circulation in the limit of no vertical mixing, J. Phys. Oceanogr., 28, 1832 – 1852. Trenberth, K., J. Olson, and W. Large (1989), A global ocean wind stress climatology based on ECMWF analyses, Tech. Rep. NCAR/TN-338+STR, Natl. Cent. for Atmos. Res., Boulder, Colo. Weber, S. L., S. S. Drijfhout, A. Abe-Ouchi, M. Crucifix, M. Eby, A. Ganopolski, S. Murakami, B. Otto-Bliesner, and W. R. Peltier (2007), The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations, Clim. Past, 3(1), 51 – 64. Wunsch, C. (1998), The work done by the wind on the oceanic general circulation, J. Phys. Oceanogr., 28, 2332 – 2340. Wunsch, C., and R. Ferrari (2004), Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281 – 314.
Collections