Publication:
On the driving processes of the Atlantic meridional overturning circulation

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-04-24
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Because of its relevance for the global climate the Atlantic meridional overturning circulation (AMOC) has been a major research focus for many years. Yet the question of which physical mechanisms ultimately drive the AMOC, in the sense of providing its energy supply, remains a matter of controversy. Here we review both observational data and model results concerning the two main candidates: vertical mixing processes in the ocean's interior and wind-induced Ekman upwelling in the Southern Ocean. In distinction to the energy source we also discuss the role of surface heat and freshwater fluxes, which influence the volume transport of the meridional overturning circulation and shape its spatial circulation pattern without actually supplying energy to the overturning itself in steady state. We conclude that both wind-driven upwelling and vertical mixing are likely contributing to driving the observed circulation. To quantify their respective contributions, future research needs to address some open questions, which we outline.
Description
© 2007 by the American Geophysical Union. We are grateful to Miguel A. M. Maqueda for contributing many relevant ideas and for many discussions from which the paper has gained strongly. We are as well indebted to Andrey Ganopolski for many useful comments and suggestions that have improved this manuscript. The paper was considerably improved by the remarks of Wilbert Weijer and two anonymous reviewers. The authors appreciate the support of several funding agencies (T.K., German Federal Ministry for Education, Science and Research through the project ‘‘Integration’’; A.G. and M.H., McDonnell Foundation; M.M., Spanish Ministry for Science and Education through the Ramón y Cajal Program and project CGL2005-06097/CLI; and A.L., Gary Comer Foundation). [135] The Editor responsible for this paper was Henk Dijkstra. He thanks technical reviewer Wilbert Weijer and two anonymous reviewers.
Unesco subjects
Keywords
Citation
Alford, M. H. (2003), Improved global maps and 54-year history of wind work on ocean inertial motions, Geophys. Res. Lett., 30(8), 1424, doi:10.1029/2002GL016614. Alley, R., and P. Clark (1999), The deglaciation of the Northern Hemisphere: A global perspective, Annu. Rev. Earth Planet. Sci., 27, 149 – 182. Arneborg, L. (2002), Mixing efficiencies in patchy turbulence, J. Phys. Oceanogr., 32, 1496 – 1506. Bacon, S., W. J. Gould, and Y. Jia (2003), Open-ocean convection in the Irminger Sea, Geophys. Res. Lett., 30(5), 1246, doi:10.1029/2002GL016271. Baines, P., and S. Condie (1998), Observations and modelling of Antarctic downslope flows: A review, in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Antarct. Res. Ser., vol. 75, edited by S. S. Jacobs and R. F. Weiss, pp. 29 – 49, AGU, Washington, D. C. Bauer, E., A. Ganopolski, and M. Montoya (2004), Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz, Paleoceanography, 19, PA3014, doi:10.1029/2004PA001030. Beardsley, R. C., and J. F. Festa (1972), A numerical model of convection driven by a surface stress and non-uniform horizontal heating, J. Phys. Oceanogr., 2, 444 – 455. Bjerknes, V. (1916), Über thermodynamische Maschinen, die unter Mitwirkung der Schwerkraft arbeiten, Abh. Akad. Wissensch. Leipzig, 35(1), 1 – 33. Bond, G., et al. (1992), Evidence for massive discharge of icebergs into the North Atlantic ocean during the last glacial, Nature, 360, 245 – 249. Braun, H., M. Christl, S. Rahmstorf, A. Ganopolski, A. Mangini, C. Kubatzki, K. Roth, and B. Kromer (2005), Solar forcing of abrupt glacial climate change in a coupled climate system model, Nature, 438, 208 – 211. Brix, H., and R. Gerdes (2003), North Atlantic Deep Water and Antarctic Bottom Water: Their interaction and influence on the variability of the global ocean circulation, J. Geophys. Res., 108(C2), 3022, doi:10.1029/2002JC001335. Broecker, W., and T.-H. Peng (1982), Tracers in the Sea, Lamont-Doherty Earth Obs., Palisades, N. Y. Broecker, W., S. Sutherland, and T. Peng (1999), A possible 20th century slowdown of Southern Ocean deep water formation, Science, 286, 1132 – 1135. Bryan, F. (1986), High-latitude salinity effects and interhemispheric thermohaline circulations, Nature, 323, 301 – 304. Bryan, F. (1987), On the parameter sensitivity of primitive equation ocean general circulation models, J. Phys. Oceanogr., 17, 970 – 985. Bryan, K., and M. Cox (1967), A numerical investigation of the oceanic general circulation, Tellus, 19, 54 – 80. Bryan, K., and L. Lewis (1979), A water mass model of the world ocean, J. Geophys. Res., 84, 2503 – 2518. Buffoni, G., A. Cappelletti, and P. Picco (2002), An investigation of thermohaline circulation in Terra Nova Bay polynya, Antarct. Sci., 14(1), 83 – 92. Caldwell, D., and J. Moum (1995), Turbulence and mixing in the ocean, U.S. Natl. Rep. Int. Union Geod. Geophys. 1991 – 1994, Rev. Geophys., 33, 1385 – 1394. Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver (2002), The role of the thermohaline circulation in abrupt climate change, Nature, 415, 863 – 869. Colin de Verdière, A. (1988), Buoyancy driven planetary flows, J. Mar. Res., 46, 215 – 265. Colin de Verdière, A. (1993), On the oceanic thermohaline circulation, in Modelling Climate-Ocean Interactions, NATO ASI Ser., Ser. I, vol. 12, edited by J. Willebrand and D. Anderson, pp. 151 – 183, Springer, New York. Coman, M. A., R. W. Griffiths, and G. O. Hughes (2006), Sandström’s experiments revisited, J. Mar. Res., 64, 783 – 796. Cubasch, U., et al. (2001), Projections of future climate change, in Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the IPCC, edited by J. T. Houghton et al., chap. 9, pp. 525 – 582, Cambridge Univ. Press, New York. Cummins, P., G. Holloway, and A. Gargett (1990), Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion, J. Phys. Oceanogr., 20, 817 – 830. DeBoer, A., and D. Nof (2004a), The Bering Strait’s grip on the Northern Hemisphere climate, Deep Sea Res., Part I, 51, 1347 – 1366. DeBoer, A., and D. Nof (2004b), The exhaust valve of the North Atlantic, J. Clim., 17, 417 – 422. Defant, A. (1929), Dynamische Ozeanographie, 222 pp., Springer, New York. Defant, A. (1961), Physical Oceanography, vol. 1, 729 pp., Elsevier, New York. Dickson, R. R., and J. Brown (1994), The production of North Atlantic Deep Water: Sources, rates and pathways, J. Geophys. Res., 99, 12,319 – 12,341. Döös, K., and A. Coward (1997), The Southern Ocean as the major upwelling zone of North Atlantic Deep Water, Int. WOCE Newsl., 27, 3 – 4. Döös, K., and D. J. Webb (1994), The Deacon cell and the other meridional cells of the Southern Ocean, J. Phys. Oceanogr., 24, 429 – 442. Dutton, J. A. (1986), The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion, 617 pp., Dover, Mineola, N. Y. Egbert, G., and R. Ray (2000), Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature, 405, 775 – 778. Faller, A. J. (1968), Sources of energy for the ocean circulation and a theory of the mixed layer, in Proceedings of the Fifth United States Congress of Applied Mechanics, American Society of Mechanical Engineers, pp. 651 – 672, U. of Minn., Minneapolis. Fofonoff, N. P. (1981), The gulf stream system, in Evolution of Physical Oceanography, edited by B. A. Warren and C. Wunsch, pp. 112 – 139, MIT Press, Cambridge, Mass. Furevik, T., C. Mauritzen, and R. Ingvaldsen (2007), The flow of Atlantic Water to the Nordic Seas and Arctic Ocean, in Arctic Alpine Ecosystems and People in a Changing Environment, edited by J. B. Ørbæk et al., Springer, New York. Gade, H. G., and K. E. Gustafsson (2004), Application of classical thermodynamical principles to the study of the oceanic overturning circulation, Tellus, Ser. A, 56, 371 – 386. Ganachaud, A., and C. Wunsch (2000), Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453 – 456. Ganopolski, A., and S. Rahmstorf (2001a), Rapid changes of glacial climate simulated in a coupled climate model,Nature, 409, 153 – 158. Ganopolski, A., and S. Rahmstorf (2001b), Stability and variability of the thermohaline circulation in the past and future: A study with a coupled model of intermediate complexity, in The Oceans and Rapid Climate Change: Past, Present, and Future, Geophys. Monogr. Ser., vol. 126, edited by D. Seidov, B. J. Haupt, and M. Maslin, pp. 261 – 275, AGU, Washington, D. C. Ganopolski, A., V. Petoukhov, S. Rahmstorf, V. Brovkin, M. Claussen, A. Eliseev, and C. Kubatzki (2001), CLIMBER-2: A climate system model of intermediate complexity. part II: Model sensitivity, Clim. Dyn., 17, 735 – 751. Garabato, A. C. N., K. I. C. Oliver, A. J. Watson, and M.-J. Messias (2004a), Turbulent diapycnal mixing in the Nordic Seas, J. Geophys. Res., 109, C12010, doi:10.1029/2004JC002411. Garabato, A. C. N., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck (2004b), Widespread intense turbulent mixing in the Southern Ocean, Science, 303, 210 – 213. Garrett, C., and W. Munk (1972), Space-time scales of internal waves, Geophys. Astrophys. Fluid Dyn., 2, 225 – 264. Garrett, C., and W. Munk (1975), Space-time scales of internal waves: A progress report, J. Geophys. Res., 80, 291 – 297. Garrett, C., and L. St. Laurent (2002), Aspects of deep ocean mixing, J. Phys. Oceanogr., 58, 11 – 24. Garrett, C., P. MacCready, and P. Rhines (1993), Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary, Annu. Rev. Fluid Mech., 25, 291 – 323. Gent, P., and J. McWilliams (1990), Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150 – 155. Gerdes, R., C. Köberle, and J. Willebrand (1991), The influence of numerical advection schemes on the results of ocean general circulation models, Clim. Dyn., 5, 211 – 226. Gill, A., S. Green, and A. Simmons (1974), Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies, Deep Sea Res. Oceanogr. Abstr., 21, 499 – 528. Gill, A. E. (1982), Atmosphere-Ocean Dynamics, 662 pp, Elsevier, New York. Gnanadesikan, A. (1999), A simple predictive model for the structure of the oceanic pycnocline, Science, 283, 2077 – 2079. Gnanadesikan, A., and R. W. Hallberg (2002), Physical oceanography: Thermal structure and general circulation, Encycl. Phys. Sci. Technol., 12, 189 – 210. Gnanadesikan, A., and R. J. Toggweiler (1999), Constraints by silicon cycling on vertical exchange in general circulation models, Geophys. Res. Lett., 26, 1865 – 1868. Gnanadesikan, A., R. Slater, P. S. Swath, and G. K. Vallis (2005), The energetics of ocean heat transport, J. Clim., 18, 2604 – 2616. Goosse, H., H. Renssen, F. M. Selten, R. J. Haarsma, and J. D. Opsteegh (2002), Potential causes of abrupt climate events: A numerical study with a three-dimensional climate model, Geophys. Res. Lett., 29(18), 1860, doi:10.1029/2002GL014993. Gregg, M., T. Sanford, and D. Winkel (2003), Reduced mixing from the breaking of internal waves in equatorial waters, Nature, 422, 513 – 515. Gregory, J. M., et al. (2005), A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration, Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209. Griesel, A., and M. M. Maqueda (2006), The relation of meridional pressure gradients to North Atlantic Deep Water volume transport in an ocean general circulation model, Clim. Dyn., 26, 781 – 799. Griffies, S., R. Pacanowski, and R. Hallberg (2000), Spurious diapycnal mixing associated with advection in a z-coordinate ocean model, Mon. Weather Rev., 128, 538 – 564. Hall, M., and H. Bryden (1982), Direct estimates and mechanisms of ocean heat transport, Deep Sea Res., Part A, 29, 339 – 359. Hallberg, R., and A. Gnanadesikan (2007), The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the Southern Ocean project, J. Phys. Oceanogr., 36, 2232 – 2252. Hasumi, H., and N. Suginohara (1999), Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation, J. Geophys. Res., 104(23), 23,367 – 23,374. Heinrich, H. (1988), Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quat. Res., 29, 143 – 152. Hemming, S. (2004), Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint, Rev. Geophys., 42, RG1005, doi:10.1029/2003RG000128. Hofmann, M., and M. Morales Maqueda (2006), Performance of a second-order moments advection scheme in an ocean general circulation model, J. Geophys. Res., 111, C05006, doi:10.1029/2005JC003279. Hogg, N., and W. Owens (1999), Direct measurement of the deep circulation within the Brazil Basin, Deep Sea Res., Part II, 46, 335 – 353. Hogg, N., W. Owens, G. Siedler, and W. Zenk (1996), Circulation in the deep Brazil Basin, in The South Atlantic: Present and Past Circulation, edited by G. Wefer et al., pp. 249 – 260, Springer, New York. Holland, W. R. (1975), Energetics of baroclinic oceans, in Numerical Models of Ocean Circulation, pp. 168 – 177, Natl. Acad. Press, Washington, D. C. Houghton, J. T. (1986), The Physics of Atmospheres, 2nd ed., Cambridge Univ. Press, New York. Huang, R. X. (1999), Mixing and energetics of the oceanic thermohaline circulation, J. Phys. Oceanogr., 29, 727 – 746. (Corrigendum, J. Phys. Oceanogr., 32, 1593, 2002) Huang, R. X. (2004), Ocean, energy flows, in Encyclopedia of Energy, vol. 4, edited by C. J. Cleveland, pp. 497 – 509, Elsevier, New York. Huang, R. X., and W. Wang (2003), Gravitational potential energy sinks in the oceans, in Near-Boundary Processes and Their Parameterization, Proceedings, ‘Aha Huliko’a Hawaii Winter Workshop, University of Hawaii at Manoa, January 21 – 24, 2003, edited by P. Muller and D. Henderson, pp. 239 – 247, Univ. of Hawaii, Manoa. Huang, R. X., W. Wang, and L. L. Liu (2006), Decadal variability of wind energy input into the world ocean, Deep Sea Res., Part II, 53, 31 – 41. Hughes, G. O., and R. W. Griffiths (2006), A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions, Ocean Modell., 12, 46 – 79. Hughes, T., and A. Weaver (1994), Multiple equilibria of an asymmetric two-basin model, J. Phys. Oceanogr., 24, 619 – 637. Ivchenko, V., A. Treguier, and S. Best (1997), A kinetic energy budget and internal instabilities of the Fine Resolution Antarctic Model, J. Phys. Oceanogr., 27, 5 – 22. Jeffreys, H. (1925), On fluid motions produced by differences of temperature and humidity, Q.J.R. Meteorol. Soc., 51, 347 – 356. Jenkins, W. (1980), Tritium and 3He in the Sargasso Sea, J. Mar. Res., 38, 533 – 569. Joyce, T. M., and K. G. Speer (1987), Modeling the large-scale influence of geothermal source on abyssal flow, J. Geophys. Res., 92, 2843 – 2850. Kamenkovich, I., and E. Sarachik (2004), Mechanisms controlling the sensitivity of the Atlantic thermohaline circulation to the parameterization of eddy transports in ocean GCMs, J. Phys. Oceanogr., 34, 1628 – 1647. Kantha, L., and C. Clayson (2000), Small Scale Processes in Geophysical Fluid Flows, Int. Geophys. Ser., vol. 67, 888 pp., Elsevier, New York. Keeling, R. (2002), On the freshwater forcing of the thermohaline circulation in the limit of low diapycnal mixing, J. Geophys. Res., 107(C7), 3077, doi:10.1029/2000JC000685. Keigwin, L., and E. Boyle (2000), Detecting Holocene changes in thermohaline circulation, Proc. Natl. Acad. Sci. U.S.A., 97, 1343 – 1346. Keigwin, L., W. Curry, S. Lehman, and S. Johnsen (1994), The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago, Nature, 371, 323 – 326. Key, R., et al. (2004), A global ocean carbon climatology: Results from the Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247. Khatiwala, S., P. Schlosser, and M. Visbeck (2002), Rates and mechanisms of water mass transformations in the Labrador Sea as inferred from tracer observations, J. Phys. Oceanogr., 32, 666 – 686. Killworth, P. D., and M. M. Nanneh (1994), Isopycnic momentum budget of the Antarctic Circumpolar Current in the Fine Resolution Antarctic Model, J. Phys. Oceanogr., 24, 1201 – 1223. Klinger, B., S. Drijfhout, J. Marotzke, and J. Scott (2003), Sensitivity of basin-wide meridional overturning to diapycnal diffusion and remote wind forcing in an idealized Atlantic –Southern Ocean geometry, J. Phys. Oceanogr., 33, 249 – 266. Klinger, B. A., and J. Marotzke (1999), Behaviour of double-hemisphere thermohaline flows in a single basin, J. Phys. Oceanogr., 29, 382 – 399. Kuhlbrodt, T., S. Titz, U. Feudel, and S. Rahmstorf (2001), A simple model of seasonal open ocean convection. part II: Labrador Sea stability and stochastic forcing, Ocean Dyn., 52, 36 – 49. Lab Sea Group (1998), The Labrador Sea deep convection experiment, Bull. Am. Meteorol. Soc., 79, 2033 – 2058. Large, W., J. McWilliams, and S. Doney (1994), Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32(4), 363 – 403. Ledwell, J., A. Watson, and C. Law (1993), Evidence for slow mixing across the pycnocline from an open-ocean tracer release experiment, Nature, 364, 701 – 703. Ledwell, J., E. Montgomery, K. Polzin, L. St. Laurent, R. Schmitt, and J. Toole (2000), Evidence for enhanced mixing over rough topography in the abyssal ocean, Nature, 403, 179 – 182. Lenderink, G., and R. J. Haarsma (1994), Variability and multiple equilibria of the thermohaline circulation associated with deepwater formation, J. Phys. Oceanogr., 24, 1480 – 1493. Lenderink, G., and R. J. Haarsma (1996), Modeling convective transitions in the presence of sea ice, J. Phys. Oceanogr., 36, 1448 – 1467. Levermann, A., and A. Griesel (2004), Solution of a model for the oceanic pycnocline depth: Scaling of overturning strength and meridional pressure difference, Geophys. Res. Lett., 31, L17302, doi:10.1029/2004GL020678. Levermann, A., A. Griesel, M. Hofmann, M. Montoya, and S. Rahmstorf (2005), Dynamic sea level changes following changes in the thermohaline circulation, Clim. Dyn., 24, 347 – 354. Levitus, S. (1982), Climatological atlas of the world ocean, Prof. Pap. 13, 173 pp., NOAA, Silver Spring, Md. Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. N. Lazier, F. Schott, and D. Farmer (1999), Observing deep convection in the Labrador Sea during winter 1994 – 1995, J. Phys. Oceanogr., 29, 2065 – 2098. Lohmann, G., and J. Schneider (1999), Dynamics and predictability of Stommel’s box model: A phase-space perspective with implications for decadal climate variability, Tellus, Ser. A, 51, 326 – 336. Lueck, R., and R. Reid (1984), On the production and dissipation of mechanical energy in the ocean, J. Geophys. Res., 89, 3439 – 3445. Luyten, J., J. Pedlosky, and H. Stommel (1983), The ventilated thermocline, J. Phys. Oceanogr., 13, 292 – 309. Manabe, S., and R. J. Stouffer (1988), Two stable equilibria of a coupled ocean-atmosphere model, J. Clim., 1, 841 – 866. Manabe, S., and R. J. Stouffer (1994), Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide, J. Clim., 7, 5 – 23. Maqueda, M., A. Willmott, and N. Biggs (2004), Polynya dynamics: A review of observations and modeling, Rev. Geophys., 42, RG1004, doi:10.1029/2002RG000116. Marotzke, J. (1997), Boundary mixing and the dynamics of the three-dimensional thermohaline circulation, J. Phys. Oceanogr., 27, 1713 – 1728. Marotzke, J., and J. Willebrand (1991), Multiple equilibria of the global thermohaline circulation, J. Phys. Oceanogr., 21, 1372 – 1385. Marshall, J., and F. Schott (1999), Open-ocean convection: Observations, theory, and models, Rev. Geophys., 37(1), 1 – 64. Marshall, J., H. Jones, R. Karsten, and R. Wardle (2002), Can eddies set ocean stratification?, J. Phys. Oceanogr., 32, 26 – 38. Marzeion, B., A. Levermann, and J. Mignot (2007), The role of stratification-dependent mixing for the stability of the Atlantic overturning in a global climate model, J. Phys. Oceanogr., in press. McManus, J., R. Francois, J.-M. Gherardi, L. Keigwin, and S. Brown-Leger (2004), Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, 428, 834 – 837. Meincke, J., B. Rudels, and H. J. Friedrich (1997), The Arctic Ocean Nordic Seas thermohaline system, J. Mar. Sci., 54(3), 283 – 299. Mignot, J., A. Levermann, and A. Griesel (2006), A decomposition of the Atlantic meridional overturning circulation into physical components using its sensitivity to vertical mixing, J. Phys. Oceanogr., 36, 636 – 650. Mohammad, R., and J. Nilsson (2004), The role of diapycnal mixing for the equilibrium response of the thermohaline circulation, Ocean Dyn., 54, 54 – 65. Monahan, A. H. (2002), Stabilisation by noise of climate regimes in a simple model: Implications for stability of the thermohaline circulation, J. Phys. Oceanogr., 32, 2072 – 2085. Montoya, M., A. Griesel, A. Levermann, J. Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf (2005), The Earth system model of intermediate complexity CLIMBER-3a. part I: Description and performance for present day conditions, Clim. Dyn., 25, 237 – 263. Morel, A., and D. Antoine (1994), Heating rate within the upper ocean in relation to its bio-optical state, J. Phys. Oceanogr., 24, 1652 – 1665. Moum, J., and T. Osborn (1986), Mixing in the main thermocline, J. Phys. Oceanogr., 16, 1250 – 1259. Moum, J., D. Caldwell, J. Nash, and G. Gunderson (2002), Observations of boundary mixing over the continental slope, J. Phys. Oceanogr., 32, 2113 – 2130. Mullarney, J. C., R. W. Griffiths, and G. O. Hughes (2004), Convection driven by differential heating at a horizontal boundary, J. Fluid Mech., 516, 181 – 209. Munk, W. (1966), Abyssal recipes I, Deep Sea Res. Oceanogr. Abstr., 13, 707 – 730. Munk, W. (1981), Internal waves and small-scale processes, in Evolution of Physical Oceanography, edited by B. Warren and C. Wunsch, pp. 264 – 291, MIT Press, Cambridge, Mass. Munk, W., and C. Wunsch (1998), Abyssal recipes II: Energetics of tidal and wind mixing, Deep Sea Res., Part I, 45, 1977 – 2010. Neumann, G., and W. Pierson (1966), Principles of Physical Oceanography, 545 pp., Prentice-Hall, Upper Saddle River, N. J. Nilsson, J., and G. Walin (2001), Freshwater forcing as a booster of the thermohaline circulation, Tellus, Ser. A, 53, 629 – 641. Nilsson, J., G. Brostroem, and G. Walin (2003), The thermohaline circulation and vertical mixing: Does weaker density stratification give stronger overturning?, J. Phys. Oceanogr., 33, 2781 – 2795. Nof, D. (2000), Does the wind control the import and export of the South Atlantic?, J. Phys. Oceanogr., 30, 2650 – 2667. Nof, D. (2003), The Southern Ocean’s grip on the northward meridional flow, Prog. Oceanogr., 56, 223 – 247. Oakey, N., B. Ruddick, D. Walsh, and J. Burke (1994), Turbulence and microstructure measurements during North Atlantic Tracer Release Program, Eos Trans. AGU, 75(3), Ocean Sci. Meet. Suppl., 130. Oort, A., L. Anderson, and J. Peixoto (1994), Estimates of the energy cycle of the oceans, J. Geophys. Res., 99, 7665 – 7688. Orsi, A., G. Johnson, and J. Bullister (1999), Circulation, mixing, and production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55 – 109. Osborn, T. (1980), Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83 – 89. Paparella, F., and W. R. Young (2002), Horizontal convection is non-turbulent, J. Fluid Mech., 466, 205 – 214. Park, Y.-G. (1999), The stability of thermohaline circulation in a two-box model, J. Phys. Oceanogr., 29, 3101 – 3110. Park, Y.-G., and K. Bryan (2000), Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. part I: Scaling-law sensitivity to vertical diffusivity, J. Phys. Oceanogr., 30, 590 – 605. Peltier, W., and C. Caulfield (2003), Mixing efficiency in stratified shear flows, Annu. Rev. Fluid Mech., 35, 135 – 167. Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff (2003), Deep convection in the Irminger Sea forced by the Greenland tip jet, Nature, 424, 152 – 156. Pierce, D. W., T. P. Barnett, and U. Mikolajewicz (1995), Competing roles of heat and freshwater flux in forcing thermohaline oscillations, J. Phys. Oceanogr., 25, 2046 – 2064. Polzin, K., J. Toole, J. Ledwell, and R. Schmitt (1997), Spatial variability of turbulent mixing in the abyssal ocean, Science, 276, 93 – 96. Prange, M., G. Lohmann, and A. Paul (2003), Influence of vertical mixing on the hysteresis: Analysis of an OGCM, J. Phys. Oceanogr., 33, 1707 – 1721. Radko, T., and J. Marshall (2004), Eddy-induced diapycnal fluxes and their role in the maintenance of the thermocline, J. Phys. Oceanogr., 34, 372 – 383. Rahmstorf, S. (1994), Rapid climate transitions in a coupled oceanatmosphere model, Nature, 372, 82 – 85. Rahmstorf, S. (1995a), Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle, Nature, 378, 145 – 149. Rahmstorf, S. (1995b), Multiple convection patterns and thermohaline flow in an idealized OGCM, J. Clim., 8, 3028 – 3039. Rahmstorf, S. (1996), On the freshwater forcing and transport of the Atlantic thermohaline circulation, Clim. Dyn., 12, 799 – 811. Rahmstorf, S. (1997), Risk of sea-change in the Atlantic, Nature, 388, 825 – 826. Rahmstorf, S. (2000), The thermohaline ocean circulation: A system with dangerous thresholds?, Clim. Change, 46, 247 – 256. Rahmstorf, S. (2002), Ocean circulation and climate during the past 120,000 years, Nature, 419, 207 – 214. Rahmstorf, S. (2003), Thermohaline circulation: The current climate, Nature, 421, 699. Rahmstorf, S., and M. England (1997), Influence of Southern Hemisphere winds on North Atlantic Deep Water flow, J. Phys. Oceanogr., 27, 2040 – 2054. Rahmstorf, S., and A. Ganopolski (1999), Long-term global warming scenarios computed with an efficient coupled climate model, Clim. Change, 43, 353 – 367. Rahmstorf, S., J. Marotzke, and J. Willebrand (1999), Stability of the thermohaline circulation, in The Warm Water Sphere of the North Atlantic Ocean, edited by W. Krauss, pp. 129 – 158, Gebrüder Borntraeger, Stuttgart, Germany. Rahmstorf, S., et al. (2005), Thermohaline circulation hysteresis: A model intercomparison, Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655. Redi, M. (1982), Oceanic isopycnal mixing by coordinate rotation, J. Phys. Oceanogr., 12, 1154 – 1158. Rhines, P. B., and S. Häkkinen (2003), Is the oceanic heat transport in the North Atlantic irrelevant to the climate in Europe?, Arct. Subarct. Ocean Fluxes Newsl., 1, 13 – 17. Rintoul, S. R., C. W. Hughes, and D. Olbers (2001), The Antarctic Circumpolar Current system, in Ocean Circulation and Climate, edited by G. Siedler, pp. 271 – 301, Elsevier, New York. Robbins, P. E., and J. M. Toole (1997), The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean, Deep Sea Res., Part I, 44, 879 – 906. Robinson, A., and H. Stommel (1959), The oceanic thermocline and the associated thermohaline circulation, Tellus, 3, 295 – 308. Rooth, C. (1982), Hydrology and ocean circulation, Prog. Oceanogr., 11, 131 – 149. Rossby, H. T. (1965), On thermal convection driven by non-uniform heating from below, Deep Sea Res. Oceanogr. Abstr., 12, 9 – 16. Rossby, T. (1998), Numerical experiments with a fluid heated nonuniformly from below, Tellus, Ser. A, 50, 242 – 257. Saenko, O., and W. Merryfield (2005), On the effect of topographically enhanced mixing on the global ocean circulation, J. Phys. Oceanogr., 35, 826 – 834. Saenko, O., and A. Weaver (2003), Southern Ocean upwelling and eddies: Sensitivity of the global overturning to the surface density range, Tellus, Ser. A, 55, 106 – 111. Saenko, O. A., and A. J. Weaver (2004), What drives heat transport in the Atlantic Ocean?, Geophys. Res. Lett., 31, L20305, doi:10.1029/2004GL020671. Samelson, R. (2004), Simple mechanistic models of middepth meridional overturning, J. Phys. Oceanogr., 34, 2096 – 2103. Sandström, J. W. (1908), Dynamische Versuche mit Meerwasser, Ann. Hydrogr. Mar. Meteorol., 36, 6 – 23. Sandström, J. W. (1916), Meteorologische Studien im Schwedischen Hochgebirge, Göteborgs K. Vetensk. Vitterhetssamhällets Handkl., 27, 48 pp. Sarnthein, M., K. Winn, S. J. A. Jung, J.-C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen (1994), Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions, Paleoceanography, 9, 209 – 267. Schaeffer, M., F. M. Selten, J. D. Opsteegh, and H. Goosse (2002), Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios, Geophys. Res. Lett., 29(16), 1767, doi:10.1029/2002GL015254. Schiller, A., U. Mikolajewicz, and R. Voss (1997), The stability of the North Atlantic thermohaline circulation in a coupled oceanatmosphere general circulation model, Clim. Dyn., 13, 325 – 347. Schlitzer, R. (2000), Electronic atlas of WOCE hydrographic and tracer data now available, Eos Trans. AGU, 81(5), 45. Schmitt, R. W. (1994), Double diffusion in oceanography, Annu. Rev. Fluid Mech., 26, 255 – 285. Schmittner, A. (2005), Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation, Nature, 434, 628 – 633. Schmittner, A., and A. Weaver (2001), Dependence of multiple climate states on ocean mixing parameters, Geophys. Res. Lett., 28, 1027 – 1030. Schmitz, W. J. (1995), On the interbasin-scale thermohaline circulation, Rev. Geophys., 33(2), 151 – 174. Schmitz, W. J. (1996), On the world ocean circulation, vol. II: The Pacific and Indian Oceans: A global update, Tech. Rep., WHOI-96-08, 237 pp., Woods Hole Oceanogr. Inst., Woods Hole, Mass. Scott, J. R., and J. Marotzke (2002), The location of diapycnal mixing and the meridional overturning circulation, J. Phys. Oceanogr., 32, 3578 – 3595. Seager, R., D. S. Battisti, J. Yin, N. Gordon, N. Naik, A. C. Clement, and M. A. Cane (2002), Is the Gulf Stream responsible for Europe’s mild winters?, Q. J. R. Meteorol. Soc., 128, 1 – 24. Severinghaus, J. P., et al. (2003), A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica, Geochim. Cosmochim. Acta, 67, 325 – 343. Siggers, J. H., R. R. Kershwell, and N. J. Balmforth (2004), Bounds on horizontal convection, J. Fluid Mech., 517, 55 – 70. Simmons, H., S. Jayne, L. St. Laurent, and A. Weaver (2004), Tidally driven mixing in a numerical model of the ocean general circulation, Ocean Modell., 6, 245 – 263. Sloyan, B. M., and S. R. Rintoul (2001a), The Southern Ocean limb of the global deep overturning circulation, J. Phys. Oceanogr., 31, 143 – 173. Sloyan, B. M., and S. R. Rintoul (2001b), Circulation, renewal and modification of Antarctic mode and intermediate water, J. Phys. Oceanogr., 31, 1005 – 1030. Smethie, W. M., Jr., and R. A. Fine (2001), Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories, Deep Sea Res., Part I, 48, 189 – 215. Spall, M. J. (2004), Boundary currents and watermass transformation in marginal seas, J. Phys. Oceanogr., 34, 1197 – 1213. Speer, K., S. Rintoul, and B. Sloyan (2000), The diabatic Deacon cell, J. Phys. Oceanogr., 30, 3212 – 3222. St. Laurent, L., and C. Garrett (2002), The role of internal tides in mixing the deep ocean, J. Phys. Oceanogr., 32, 2882 – 2899. Stommel, H. (1961), Thermohaline convection with two stable regimes of flow, Tellus, 13, 224 – 230. Stommel, H. (1962), On the smallness of sinking regions in the ocean, Proc. Natl. Acad. Sci. U.S.A., 48, 766 – 772. Stommel, H., and A. B. Arons (1960), On the abyssal circulation of the world ocean - I. Stationary planetary flow patterns on a sphere, Deep Sea Res., 6, 140 – 154. Stouffer, R. J., and S. Manabe (2003), Equilibrium response of thermohaline circulation to large changes in atmospheric CO2, Clim. Dyn., 20, 759 – 773, doi:10.1007/s00382-002-0302-4. Straneo, F. (2006), On the connection between dense water formation, overturning and poleward heat transport in a convective basin, J. Phys. Oceanogr., 36, 1822 – 1840. Talley, L., J. Reid, and P. Robbins (2003), Data-based meridional overturning streamfunctions for the global ocean, J. Clim., 16, 3213 – 3224. Thompson, L., and G. Johnson (1996), Abyssal currents generated by diffusion and geothermal heating over rises, Deep Sea Res., Part I, 43, 193 – 211. Thorpe, R., J. Gregory, T. Johns, R. Wood, and J. Mitchell (2001), Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model, J. Clim., 14, 3102 – 3116. Timmermann, A., and H. Goosse (2004), Is the wind stress forcing essential for the meridional overturning circulation?, Geophys. Res. Lett., 31, L04303, doi:10.1029/2003GL018777. Timmermann, A., S.-I. An, U. Krebs, and H. Goosse (2005), ENSO suppression due to weakening of the North Atlantic thermohaline circulation, J. Clim., 18, 2842 – 2859. Toggweiler, J. R., and B. Samuels (1993a), Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds?, in The Global Carbon Cycle, NATO ASI Ser., Ser. I, edited by M. Heimann, pp. 333 – 366, Springer, New York. Toggweiler, J. R., and B. Samuels (1993b), New radiocarbon constraints on the upwelling of abyssal water to the ocean’s surface, in The Global Carbon Cycle., NATO ASI Ser., Ser. I, edited by M. Heimann, pp. 303 – 331, Springer, New York. Toggweiler, J. R., and B. Samuels (1995), Effect of Drake Passage on the global thermohaline circulation, Deep Sea Res., Part I, 42, 477 – 500. Toggweiler, J. R., and B. Samuels (1998), On the ocean’s large scale circulation in the limit of no vertical mixing, J. Phys. Oceanogr., 28, 1832 – 1852. Toggweiler, J. R., K. Dixon, and W. S. Broecker (1991), The Peru upwelling and the ventilation of the South Pacific thermocline, J. Geophys. Res., 96, 20,467 – 20,497. Trenberth, K. E., and J. M. Caron (2001), Estimates of meridional atmosphere and ocean heat transports, J. Clim., 14, 3433 – 3443. Tziperman, E., J. R. Toggweiler, Y. Feliks, and K. Bryan (1994), Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models?, J. Phys. Oceanogr., 24, 217 – 232. Vallis, G. (1999), Large-scale circulation and production of stratification: Effects of wind, geometry and diffusion, J. Phys. Oceanogr., 30, 933 – 954. van Kreveld, S., M. Sarnthein, H. Erlenkeuser, P. Grootes, S. Jung, M. J. Nadeau, U. Pflaumann, and A. Voelker (2000), Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60 – 18 kyr, Paleoceanography, 15, 425 – 442. Vellinga, M., and R. A. Wood (2002), Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Clim. Change, 54, 251 – 267. Veronis, G. (1975), The role of models in tracer studies, in Numerical Models of Ocean Circulation, pp. 133 – 146, Natl. Acad. of Sci., Washington, D. C. Voelker, A., et al. (2002), Global distribution of centennial-scale records for marine isotope stage (MIS) 3: A database, Quat. Sci. Rev., 21, 1185 – 1214. Wang, W., and R. X. Huang (2004a), Wind energy input into the Ekman layer, J. Phys. Oceanogr., 34, 1267 – 1275. Wang, W., and R. X. Huang (2004b), Wind energy input into the surface waves, J. Phys. Oceanogr., 34, 1276 – 1280. Wang, W., and R. X. Huang (2005), An experimental study on thermal circulation driven by horizontal differential heating, J. Fluid Mech., 540, 49 – 73. Watanabe, M., and T. Hibiya (2002), Global estimates of the windinduced energy flux to inertial motions in the surface mixed layer, Geophys. Res. Lett., 29(8), 1239, doi:10.1029/2001GL014422. Watson, A. J., et al. (1999), Mixing and convection in the Greenland Sea from a tracer-release experiment, Nature, 401, 902 – 904. Weaver, A. J., and T. M. C. Hughes (1992), Stability and variability of the thermohaline circulation and its link to climate, in Trends in Physical Oceanography, pp. 15 – 70, Counc. of Sci. Res. Integr., Trivandrum, India. Weaver, A. J., C. M. Bitz, A. F. Fanning, and M. M. Holland (1999), Thermohaline circulation: High-latitude phenomena and the difference between the Pacific and Atlantic, Annu. Rev. Earth Planet. Sci., 27, 231 – 285. Webb, D. J., and N. Suginohara (2001a), Vertical mixing in the ocean, Nature, 409, 37. Webb, D. J., and N. Suginohara (2001b), The interior circulation of the ocean, in Ocean Circulation and Climate, edited by G. Siedler, pp. 205 – 214, Elsevier, New York. Welander, P. (1982), A simple heat-salt oscillator, Dyn. Atmos. Oceans, 6, 233 – 242. Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory (1999), Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model, Nature, 399, 572 – 575. Wood, R. A., M. Vellinga, and R. Thorpe (2003), Global warming and thermohaline circulation stability, Philos. Trans. R. Soc. London, Ser. A, 361, 1961 – 1975. Wright, D., C. Vreugdenhil, and T. Hughes (1995), Vorticity dynamics and zonally averaged ocean circulation models, J. Phys. Oceanogr., 25, 2141 – 2154. Wunsch, C. (1998), The work done by the wind on the oceanic general circulation, J. Phys. Oceanogr., 28, 2332 – 2340. Wunsch, C. (2005), Thermohaline loops, Stommel box models, and the Sandstro¨m theorem, Tellus, Ser. A, 57, 84 – 99. Wunsch, C. (2006), Abrupt climate change: An alternative view, Quat. Res., 65, 191 – 203. Wunsch, C., and R. Ferrari (2004), Vertical mixing, energy and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281 – 314. Wunsch, C., D. Hu, and B. Grant (1983), Mass, heat, salt and nutrient fluxes in the South Pacific Ocean, J. Phys. Oceanogr., 13, 725 – 753. Zhang, J., R. Schmitt, and R. Huang (1999), The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation, J. Phys. Oceanogr., 29, 1096 – 1108. Zickfeld, K., A. Levermann, M. Granger Morgan, T. Kuhlbrodt, S. Rahmstorf, and D. Keith (2007), Expert judgements on the response of the Atlantic meridional overturning circulation to climate change, Clim. Change, in press.
Collections