Publication:
Cosmological perturbations in coherent oscillating scalar field models

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-03-03
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V(ϕ) = λ|ϕ|^n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c_eff^ 2  = ω = (n − 2)/(n + 2) with ω the effective equation of state. We also obtain the first order correction in k^ 2/ω_eff^ 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω_eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet’s theorem.
Description
Open Access, © The Authors. © Springer Verlag, A. G. Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. This work has been supported by MICINN (Spain) project numbers FIS2011-23000, FPA2011-27853-01, FIS2014-52837-P and Consolider-Ingenio MULTIDARK CSD2009- 00064. S.J.N.J. acknowledge support from Complutense University under grant CT4/14. We would like to thank Alberto Díez Tejedor for his useful comments.
Unesco subjects
Keywords
Citation
[1] T. Damour and V.F. Mukhanov, Inflation without slow roll, Phys. Rev. Lett. 80(1998) 3440 [2] A.R. Liddle and A. Mazumdar, Inflation during oscillations of the inflaton, Phys. Rev. D 58 (1998) 083508. [3] J.-w. Lee, S. Koh, C. Park, S.-J. Sin and C.H. Lee, Oscillating inflation with a nonminimally coupled scalar field, Phys. Rev. D 61 (2000) 027301. [4] V.H. Cardenas and G. Palma, Some remarks on oscillating inflation, Phys. Rev. D 61 (2000) 027302. [5] M. Sami, Inflation with oscillations, Grav. Cosmol. 8 (2003) 309. [6] A.R. Liddle and R.J. Scherrer, A Classification of scalar field potentials with cosmological scaling solutions, Phys. Rev. D 59 (1999) 023509. [7] J.-a. Gu, Oscillating Quintessence. [8] S.D.H. Hsu, Cosmology of nonlinear oscillations, Phys. Lett. B 567 (2003) 9 [9] S. Dutta and R.J. Scherrer, Evolution of Oscillating Scalar Fields as Dark Energy,Phys. Rev. D 78 (2008) 083512. [10] M. Sami and T. Padmanabhan, A Viable cosmology with a scalar field coupled to the trace of the stress tensor, Phys. Rev. D 67 (2003) 083509 [Erratum ibid. D 67(2003) 109901] . [11] V. Sahni and L.-M. Wang, A New cosmological model of quintessence and dark matter, Phys. Rev. D 62 (2000) 103517. [12] E. Masso, F. Rota and G. Zsembinszki, Scalar field oscillations contributing to dark energy, Phys. Rev. D 72 (2005) 084007. [13] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440. [14] R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791. [15] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223. [16] F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons,Phys. Rev. Lett. 40 (1978) 279. [17] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.B 120 (1983) 127. [18] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.B 120 (1983) 133. [19] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137. [20] M.S. Turner, Coherent Scalar Field Oscillations in an Expanding Universe, Phys. Rev. D 28 (1983) 1243. [21] J.E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150(1987) 1. [22] B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325]. [23] M. Gasperini and G. Veneziano, Dilaton production in string cosmology, Phys. Rev.D 50 (1994) 2519 [gr-qc/9403031] .ADS [24] J.A.R. Cembranos, Dark Matter from R 2 gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653]. [25] J.A.R. Cembranos, R 2 Dark Matter, J. Phys. Conf. Ser. 315 (2011) 012004 [arXiv:1011.0185]. [26] A. Dobado and A.L. Maroto, The Dynamics of the Goldstone bosons on the brane,Nucl. Phys. B 592 (2001) 203 [hep-ph/0007100].CrossRef [27] J. Alcaraz, J.A.R. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders,Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] .ADS [28] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322]. [29] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041]. [30] J.A.R. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] .ADS [31] A.L. Maroto, The Nature of branon dark matter, Phys. Rev. D 69 (2004) 043509 [hep-ph/0310272] .ADS [32] A.L. Maroto, Brane oscillations and the cosmic coincidence problem, Phys. Rev. D 69 (2004) 101304 [hep-ph/0402278] .ADS [33] S.-J. Sin, Late time cosmological phase transition and galactic halo as Bose liquid,Phys. Rev. D 50 (1994) 3650 [hep-ph/9205208] .ADS [34] S.U. Ji and S.-J. Sin, Late time phase transition and the galactic halo as a bose liquid: 2. The Effect of visible matter, Phys. Rev. D 50 (1994) 3655 [hep-ph/9409267] .ADS [35] J.-w. Lee and I.-g. Koh, Galactic halos as boson stars, Phys. Rev. D 53 (1996) 2236 [hep-ph/9507385] . [36] W. Hu, Structure formation with generalized dark matter, Astrophys. J. 506(1998) 485 [astro-ph/9801234]. [37] F. Ferrer and J.A. Grifols, Bose-Einstein condensation, dark matter and acoustic peaks, JCAP 12 (2004) 012 [astro-ph/0407532]. [38] C.G. Böhmer and T. Harko, Can dark matter be a Bose-Einstein condensate?, JCAP06 (2007) 025 [arXiv:0705.4158] .CrossRef [39] L.A. Ureña-López, Bose-Einstein condensation of relativistic Scalar Field Dark Matter, JCAP 01 (2009) 014 [arXiv:0806.3093]. [40] J.-w. Lee, Is dark matter a BEC or scalar field?, J. Korean Phys. Soc. 54 (2009) 2622 [arXiv:0801.1442]. [41] J.-w. Lee and S. Lim, Minimum mass of galaxies from BEC or scalar field dark matter, JCAP 01 (2010) 007 [arXiv:0812.1342]. [42] A.P. Lundgren, M. Bondarescu, R. Bondarescu and J. Balakrishna, Luke-warm dark matter: Bose-condensation of ultra-light particles, Astrophys. J. 715 (2010) L35 [arXiv:1001.0051]. [43] I. Rodríguez-Montoya, J. Magaña, T. Matos and A. Pérez-Lorenzana, Ultra light bosonic dark matter and cosmic microwave background, Astrophys. J. 721 (2010) 1509 [arXiv:0908.0054]. [44] T. Harko, Cosmological dynamics of dark matter Bose-Einstein Condensation,Phys. Rev. D 83 (2011) 123515 [arXiv:1105.5189] .ADS [45] T. Harko, Bose-Einstein condensation of dark matter solves the core/cusp problem,JCAP 05 (2011) 022 [arXiv:1105.2996]. [46] P.-H. Chavanis, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results, Phys. Rev. D 84(2011) 043531 [arXiv:1103.2050]. [47] P.-H. Chavanis and L. Delfini, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results,Phys. Rev. D 84 (2011) 043532 [arXiv:1103.2054] .ADS [48] V. Lora, J. Magaña, A. Bernal, F.J. Sánchez-Salcedo and E.K. Grebel, On the mass of ultra-light bosonic dark matter from galactic dynamics, JCAP 02 (2012) 011 [arXiv:1110.2684]. [49] P.J.E. Peebles and A. Vilenkin, Noninteracting dark matter, Phys. Rev. D 60(1999) 103506 [astro-ph/9904396] .ADS [50] P.J.E. Peebles, Fluid dark matter, Astrophys. J. 534 (2000) L127 [astro-ph/0002495]. [51] T. Matos, F.S. Guzmán and L.A. Ureña-López, Scalar field as dark matter in the universe, Class. Quant. Grav. 17 (2000) 1707 [astro-ph/9908152].CrossRefMATH [52] A. Arbey, J. Lesgourgues and P. Salati, Quintessential haloes around galaxies,Phys. Rev. D 64 (2001) 123528 [astro-ph/0105564] .ADS [53] J. Magaña and T. Matos, A brief Review of the Scalar Field Dark Matter model, J. Phys. Conf. Ser. 378 (2012) 012012 [arXiv:1201.6107]. [54] T. Matos and L.A. Ureña-López, Quintessence and scalar dark matter in the universe, Class. Quant. Grav. 17 (2000) L75 [astro-ph/0004332].MATH [55] T. Matos and L.A. Ureña-López, A Further analysis of a cosmological model of quintessence and scalar dark matter, Phys. Rev. D 63 (2001) 063506 [astro-ph/0006024] .ADS [56] T. Matos, J.-R. Luévano, I. Quiros, L.A. Ureña-López and J.A. Vázquez, Dynamics of Scalar Field Dark Matter With a Cosh-like Potential, Phys. Rev. D 80 (2009) 123521 [arXiv:0906.0396] .ADS [57] A. Suárez and T. Matos, Structure Formation with Scalar Field Dark Matter: The Fluid Approach, Mon. Not. Roy. Astron. Soc. 416 (2011) 87 [arXiv:1101.4039] .ADS [58] J. Magaña, T. Matos, A. Suárez and F.J. Sánchez-Salcedo, Structure formation with scalar field dark matter: the field approach, JCAP 10 (2012) 003 [arXiv:1204.5255]. [59] M.S. Turner, Coherent scalar-field oscillations in an expanding universe, Phys. Rev. D 28 (1983) 1243. [60] M.C. Johnson and M. Kamionkowski, Dynamical and Gravitational Instability of Oscillating-Field Dark Energy and Dark Matter, Phys. Rev. D 78 (2008) 063010 [arXiv:0805.1748] .ADS [61] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J. Núñez Jareno, Isotropy theorem for cosmological vector fields, Phys. Rev. D 86 (2012) 021301 [arXiv:1203.6221] .ADS [62] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareno, Isotropy theorem for cosmological Yang-Mills theories, Phys. Rev. D 87 (2013) 043523 [arXiv:1212.3201] .ADS [63] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareno, Solution to the Isotropy Problem for Cosmological Hidden Vector Models, arXiv:1309.7447 . [64] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareno, Isotropy theorem for arbitrary-spin cosmological fields, JCAP 03 (2014) 042 [arXiv:1311.1402].CrossRef [65] P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106]. [66] D.J.E. Marsh and P.G. Ferreira, Ultra-Light Scalar Fields and the Growth of Structure in the Universe, Phys. Rev. D 82 (2010) 103528 [arXiv:1009.3501] .ADS [67] D.J.E. Marsh, E. Macaulay, M. Trebitsch and P.G. Ferreira, Ultra-light Axions: Degeneracies with Massive Neutrinos and Forecasts for Future Cosmological Observations, Phys. Rev. D 85 (2012) 103514 [arXiv:1110.0502] .ADS [68] B. Kain and H.Y. Ling, Cosmological Inhomogeneities with Bose-Einstein Condensate Dark Matter, Phys. Rev. D 85 (2012) 023527 [arXiv:1112.4169] .ADS [69] P.-H. Chavanis, Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter, Astron. Astrophys. 537 (2012) A127 [arXiv:1103.2698]. [70] O. Erken, P. Sikivie, H. Tam and Q. Yang, Axion Dark Matter and Cosmological Parameters, Phys. Rev. Lett. 108 (2012) 061304 [arXiv:1104.4507]. [71] O. Erken, P. Sikivie, H. Tam and Q. Yang, Cosmic axion thermalization, Phys. Rev.D 85 (2012) 063520 [arXiv:1111.1157] .ADS [72] M. Khlopov, B.A. Malomed and Ya.B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes, Mon. Not. Roy. Astron. Soc. 215(1985) 575 . [73] Y. Nambu and M. Sasaki, Quantum Treatment of Cosmological Axion Perturbations,Phys. Rev. D 42 (1990) 3918 .ADS [74] B. Ratra, Expressions for linearized perturbations in a massive scalar field dominated cosmological model, Phys. Rev. D 44 (1991) 352 .ADS [75] J.-c. Hwang, Roles of a coherent scalar field on the evolution of cosmic structures,Phys. Lett. B 401 (1997) 241 [astro-ph/9610042] . [76] J.-c. Hwang and H. Noh, Axion as a Cold Dark Matter candidate, Phys. Lett. B 680(2009) 1 [arXiv:0902.4738]. [77] C.-G. Park, J.-c. Hwang and H. Noh, Axion as a cold dark matter candidate: low-mass case, Phys. Rev. D 86 (2012) 083535 [arXiv:1207.3124] .ADS [78] W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett.85 (2000) 1158 [astro-ph/0003365]. [79] M. Alcubierre, A. de la Macorra, A. Diez-Tejedor and J.M. Torres, Cosmological scalar field perturbations can grow, Phys. Rev. D 92 (2015) 063508 [arXiv:1501.06918] .ADS [80] J.M. Torres, M. Alcubierre, A. Diez-Tejedor and D. Núñez, Cosmological nonlinear structure formation in full general relativity, Phys. Rev. D 90 (2014) 123002 [arXiv:1409.7953] .ADS [81] A. Taruya, Parametric amplification of density perturbation in the oscillating inflation, Phys. Rev. D 59 (1999) 103505 [hep-ph/9812342] .ADS [82] S. Tsujikawa, Particle production in the oscillating inflation model, Phys. Rev. D 61(2000) 083516 [hep-ph/0003252] .ADS [83] S. Kasuya, Difficulty of a spinning complex scalar field to be dark energy, Phys. Lett. B 515 (2001) 121 [astro-ph/0105408]. [84] L.A. Boyle, R.R. Caldwell and M. Kamionkowski, Spintessence! New models for dark matter and dark energy, Phys. Lett. B 545 (2002) 17 [astro-ph/0105318]. [85] S. Kasuya, M. Kawasaki and F. Takahashi, I-balls, Phys. Lett. B 559 (2003) 99 [hep-ph/0209358].MATH [86] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge (1982). [87] W. Magnus and S. Winkler, Hill’s Equation, Dover Publications (1979). [88] F.M. Arscott, Periodic differential equations, Pergamon Press (1964). [89] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Cosmological perturbations of coherent vector fields, work in preparation.
Collections